Splicing regulation by RS2Z36 controls ovary patterning and fruit growth in tomato
Authors: Vraggalas, S., Rosenkranz, R. R., Keller, M., Perez-Perez, Y., Bachiri, S., Zehl, K., Bold, J., Simm, S., Ghatak, A., Weckwerth, W., Afjehi-Sadat, L., Chaturvedi, P., Testillano, P. S., Mueller-McNicoll, M., Zarnack, K., Fragkostefanakis, S.
The study identifies the serine/arginine-rich splicing factor RS2Z36 as a key regulator of ovary patterning and early fruit morphology in tomato, with loss‑of‑function mutants producing smaller, ellipsoid fruits and elongated pericarp cells. RNA‑seq and proteomic analyses reveal widespread alternative splicing and altered protein abundance, including novel splice‑variant peptides, while mutant pericarps show increased deposition of LM6‑detected arabinan and AGP epitopes.
The study compares the iron-poor oceanic diatom Thalassiosira oceanica with the iron-rich coastal species T. pseudonana to uncover how diatoms adapt to low-iron conditions. Using photo‑physiological measurements, proteomic profiling, and focused ion beam scanning electron microscopy, the researchers show that each species remodels chloroplast compartments and exhibits distinct mitochondrial architectures to maintain chloroplast‑mitochondrial coupling under iron limitation.
CLPC2 plays specific roles in CLP complex-mediated regulation of growth, photosynthesis, embryogenesis and response to growth-promoting microbial compounds
Authors: Leal-Lopez, J., Bahaji, A., De Diego, N., Tarkowski, P., Baroja-Fernandez, E., Munoz, F. J., Almagro, G., Perez, C. E., Bastidas-Parrado, L. A., Loperfido, D., Caporalli, E., Ezquer, I., Lopez-Serrano, L., Ferez-Gomez, A., Coca-Ruiz, V., Pulido, P., Morcillo, R. J. L., Pozueta-Romero, J.
The study demonstrates that the plastid chaperone CLPC2, but not its paralogue CLPC1, is essential for Arabidopsis responsiveness to microbial volatile compounds and for normal seed and seedling development. Loss of CLPC2 alters the chloroplast proteome, affecting proteins linked to growth, photosynthesis, and embryogenesis, while overexpression of CLPC2 mimics CLPC1 deficiency, highlighting distinct functional roles within the CLP protease complex.
The study functionally characterizes a conserved structured RNA motif (45ABC) in Arabidopsis RBP45 pre‑mRNAs, showing that its sequence and pairing elements mediate a negative auto‑ and cross‑regulatory feedback loop through alternative splicing that produces unproductive isoforms and reduces RBP45 expression. Transcriptome‑wide splicing analysis and phenotypic assessment of rbp45 mutants reveal that RBP45B plays a dominant role and that proper regulation of this motif is essential for root growth and flowering time.
The study evaluated a transgenic soybean line (VPZ-34A) expressing Arabidopsis VDE, PsbS, and ZEP for combined improvements in light‑use efficiency and carbon assimilation under ambient and elevated CO2 in a FACE experiment. While VPZ‑34A showed enhanced maximum quantum efficiency of PSII under fluctuating light, it did not increase carbon assimilation efficiency or yield, and transcriptome analysis revealed limited gene expression changes. The results suggest that VPZ‑mediated photosynthetic gains are insufficient to boost productivity under elevated CO2.
The study examined DNA methylation dynamics in Arabidopsis thaliana shoots and roots under heat, phosphate deficiency, and combined stress using whole-genome bisulfite sequencing, small RNA‑seq, and RNA‑seq. Distinct stress‑specific methylation patterns were identified, with heat and combined stress causing CHH hypomethylation, phosphate deficiency causing hyper‑ and hypomethylation in shoots and roots respectively, and the combined stress exhibiting a unique signature independent of additive effects. Methylation changes were concentrated in transposable elements and regulatory regions, implicating RdDM and CMT2 pathways and suggesting a role in chromatin accessibility rather than direct transcriptional control.
The study reveals that heat tolerance of meiotic division in Arabidopsis thaliana depends on sustained translation of cell‑cycle genes mediated by the protein TAM, which forms specialized condensates under high temperature. Natural variation was used to identify heat‑sensitive and heat‑tolerant TAM alleles, and boosting TAM translation with complementary peptides rescued heat‑induced meiotic defects, highlighting a potential mechanism driving polyploidisation under climate stress.
Thermotolerant pollen tube growth is controlled by RALF signaling.
Authors: Althiab Almasaud, R., Ouonkap Yimga, S. V., Ingram, J., Oseguera, Y., Alkassem Alosman, M., Travis, C., Henry, A., Medina, M., Oulhen, N., Wessel, G. M., Delong, A., Pease, J., DaSilva, N., Johnson, M.
The study investigates the molecular basis of heat‑tolerant pollen tube growth in tomato (Solanum lycopersicum) by comparing thermotolerant and sensitive cultivars. Using live imaging, transcriptomics, proteomics, and genetics, the authors identified the Rapid Alkalinization Factor (RALF) signaling pathway as a key regulator of pollen tube integrity under high temperature, with loss of a specific RALF peptide enhancing tube integrity in a thermotolerant cultivar.
Daily Heat Stress Induces Accumulation of Non-functional PSII-LHCII and Donor-side Limitation of PSI via Downregulation of the Cyt bf Complex in Arabidopsis thaliana
The study examined the impact of daily moderate heat stress (38 °C for 4 h) on Arabidopsis thaliana, revealing altered thylakoid ultrastructure and structurally intact but functionally impaired PSII‑LHCII complexes. A pronounced reduction in cytochrome b6f content limited PSI on the donor side, suggesting that Cyt b6f down‑regulation serves as an acclimation mechanism that protects PSI at the expense of overall photosynthetic efficiency.
The study investigated how barley (Hordeum vulgare) adjusts mitochondrial respiration under salinity stress using physiological, biochemical, metabolomic and proteomic approaches. Salt treatment increased respiration and activated the canonical TCA cycle, while the GABA shunt remained largely inactive, contrasting with wheat responses.