A SABATH family enzyme regulates development via the gibberellin-related pathway in the liverwort Marchantia polymorpha
Authors: Kawamura, S., Shimokawa, E., Ito, M., Nakamura, I., Kanazawa, T., Iwano, M., Sun, R., Yoshitake, Y., Yamaoka, S., Yamaguchi, S., Ueda, T., Kato, M., Kohchi, T.
The study identified 12 SABATH methyltransferase genes in the liverwort Marchantia polymorpha and demonstrated that MpSABATH2 is crucial for normal thallus growth and gemma cup formation. Loss‑of‑function mutants displayed developmental phenotypes reminiscent of far‑red light responses, which were linked to gibberellin metabolism and could be partially rescued by inhibiting GA biosynthesis or supplying the GA precursor ent‑kaurenoic acid. These findings suggest that SABATH enzymes independently evolved regulatory roles in land‑plant development.
The study establishes a tractable system using the large bloom-forming diatom Coscinodiscus granii and its natural oomycete parasite Lagenisma coscinodisci, enabling manual isolation of single host cells and stable co-cultures. High‑quality transcriptomes for both partners were assembled, revealing diverse oomycete effectors and a host transcriptional response involving proteases and exosome pathways, while also profiling the co‑occurring heterotrophic flagellate Pteridomonas sp. This tripartite platform provides a unique marine model for dissecting molecular mechanisms of oomycete‑diatom interactions.
The study demonstrates that carbon availability promotes gemma cup formation in Marchantia polymorpha by activating cytokinin signaling, which up‑regulates the transcription factors MpGCAM1 and MpSTG. Pharmacological and genetic manipulations showed that cytokinin accumulation in response to sucrose and high light is sufficient to overcome low‑sucrose repression, and that this pathway operates independently of KAI2A‑MAX2 mediated karrikin signaling. The findings suggest a conserved carbon‑cytokinin interaction governing developmental plasticity across land plants.
A comprehensive multi‑environment trial of 437 maize testcross hybrids derived from 38 MLN‑tolerant lines and 29 testers identified additive genetic effects as the primary driver of grain yield, disease resistance, and drought tolerance. Strong general combining ability and specific combining ability patterns were uncovered, with top hybrids delivering up to 5.75 t ha⁻¹ under MLN pressure while maintaining high performance under optimum and drought conditions. The study provides a framework for selecting elite parents and exploiting both additive and non‑additive effects to develop resilient maize hybrids for sub‑Saharan Africa.
The study evaluated a transgenic soybean line (VPZ-34A) expressing Arabidopsis VDE, PsbS, and ZEP for combined improvements in light‑use efficiency and carbon assimilation under ambient and elevated CO2 in a FACE experiment. While VPZ‑34A showed enhanced maximum quantum efficiency of PSII under fluctuating light, it did not increase carbon assimilation efficiency or yield, and transcriptome analysis revealed limited gene expression changes. The results suggest that VPZ‑mediated photosynthetic gains are insufficient to boost productivity under elevated CO2.
The study characterizes the liverwort-specific NPR protein (MpNPR) in Marchantia polymorpha, demonstrating that it controls oil body formation and confers resistance to gastropod herbivory through interaction with the transcription factor MpERF13. Loss- or gain-of-function of MpNPR disrupts MpERF13‑dependent gene expression and compromises defense against snail feeding, revealing a lineage‑specific immune pathway distinct from tracheophyte NPR functions.
The study performed a meta‑transcriptomic analysis of over twenty drought versus control experiments in Vitis vinifera and two hybrid rootstocks, identifying a core set of 4,617 drought‑responsive genes. Using transcription factor binding motif enrichment and random‑forest machine learning, gene regulatory networks were built, revealing key regulators such as ABF2, MYB30A, and a novel HMG‑box protein. These regulators and network hierarchies provide candidate targets for breeding and biotechnological improvement of grapevine drought tolerance.
The study demonstrates that red and blue light have opposing effects on thallus growth orientation in Marchantia polymorpha, with red light promoting epinasty and blue light promoting hyponasty. Loss-of-function mutants in the respective photoreceptors and BBX transcription factors reveal antagonistic interactions that balance thallus flatness under white light. Time‑resolved transcriptomics identified rapid light‑induced genes, including all six MpBBX members, whose mutant phenotypes support this antagonistic model.
Nanoclustering of a plant transcription factor enables strong yet specific DNA binding
Authors: Arfman, K., Janssen, B. P. J., Romein, R., van den Boom, S., van der Woude, M., Jansen, L., Rademaker, M., Hernandez-Garcia, J., Ramalho, J. J., Dipp-Alvarez, M., Borst, J. W., Weijers, D., van Mierlo, C. P. M., Sprakel, J.
The study reveals that the Auxin Response Factor MpARF2 in Marchantia polymorpha forms nanoscopic clusters within the plant nucleus, representing a distinct mode of DNA binding distinct from monomeric/oligomeric binding and liquid phase-separated condensates. These nanoclusters provide high‑affinity, switch‑like, sequence‑specific DNA interaction, suggesting a novel mechanism for transcriptional regulation by TF nanoclustering.
The study reveals that in the liverwort Marchantia polymorpha, the UV‑B photoreceptor MpUVR8 forms homodimers that monomerize and accumulate in the nucleus upon UV‑B exposure, activating COP1‑dependent growth inhibition, gene expression reprogramming, and UV‑absorbing metabolite production. MpRUP promotes redimerization of MpUVR8, acting as a negative regulator, while MpSPA also negatively modulates UVR8 signaling, indicating lineage‑specific diversification of UV‑B signaling components that originated over 400 Myr ago.