Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 10 Papers

A chloroplast-localized protein AT4G33780 regulates Arabidopsis development and stress-associated responses

Authors: Yang, Z.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.03.697459

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the chloroplast‑localized protein AT4G33780 in Arabidopsis thaliana using CRISPR/Cas9 knockout and overexpression lines, revealing tissue‑specific expression and context‑dependent effects on seed germination, seedling growth, vegetative development, and root responses to nickel stress. Integrated transcriptomic (RNA‑seq) and untargeted metabolomic analyses show extensive transcriptional reprogramming—especially of cell‑wall genes—and altered central energy metabolism, indicating AT4G33780 coordinates metabolic state with developmental regulation rather than controlling single pathways.

AT4G33780 chloroplast regulator Arabidopsis thaliana transcriptomics metabolomics

DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana

Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.

Date: 2025-08-26 · Version: 1
DOI: 10.1101/2025.08.21.671646

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.

heterosis DNA methylation DDM1 Arabidopsis thaliana transcriptomics

Large-Scale Multigenome-Wide Study Predicts the Existence of Transmembrane Phosphotransfer Proteins in Plant MSP Signaling Pathway

Authors: Lomin, S. N., Brenner, W. G., Savelieva, E. M., Arkhipov, D. V., Romanov, G. A.

Date: 2025-07-31 · Version: 1
DOI: 10.1101/2025.07.28.667123

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Large-scale bioinformatics identified a new class of transmembrane phosphotransfer proteins (TM‑HPt) across 61 plant species, showing conserved HPt motifs and potential activity in multistep phosphorelay signaling. Phylogenetic relationships were inferred via Bayesian DNA analysis, expression was validated by transcriptomics, and molecular modeling suggested possible membrane-associated structural arrangements.

transmembrane HPt proteins multistep phosphorelay phylogenetic analysis molecular modeling plant signaling

A sublethal drought and rewatering time course reveals intricate patterning of responses in the annual Arabidopsis thaliana

Authors: Fitzek-Campbell, E., Psaroudakis, D., Weisshaar, B., Junker, A., Braeutigam, A.

Date: 2025-07-27 · Version: 1
DOI: 10.1101/2025.07.25.666782

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study applied a progressive, sublethal drought treatment to Arabidopsis thaliana, collecting time‑resolved phenotypic and transcriptomic data. Machine‑learning analysis revealed distinct drought stages driven by multiple overlapping transcriptional programs that intersect with plant aging, and identified high‑explanatory‑power transcripts as biomarkers rather than causal agents.

drought stress Arabidopsis thaliana transcriptomics high‑throughput phenotyping biomarker transcripts

Enhancement of Arabidopsis growth by Enterobacter sp. SA187 under elevated CO2 is dependent on ethylene signalling activation and primary metabolism reprogramming

Authors: Ilyas, A., Mauve, C., Pateyron, S., Paysant-Le Roux, C., Bigeard, J., Hodges, M., de Zelicourt, A.

Date: 2025-07-09 · Version: 1
DOI: 10.1101/2025.07.08.663752

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study shows that inoculating Arabidopsis thaliana with the plant‑growth‑promoting bacterium Enterobacter sp. SA187 markedly boosts root and shoot biomass under elevated CO₂, accompanied by altered nitrogen and carbon content and reshaped phytohormone signaling. Transcriptomic and metabolomic analyses reveal activation of salicylic acid, jasmonic acid, and ethylene pathways and enhanced primary metabolism, while the ethylene‑insensitive ein2‑1 mutant demonstrates that the growth benefits are ethylene‑dependent.

Enterobacter sp. SA187 elevated CO2 Arabidopsis thaliana phytohormone signaling transcriptomics

Zinc deficiency induces spatially distinct responses in roots and impacts ZIP12-dependent zinc homeostasis in Arabidopsis

Authors: Thiebaut, N., Persson, D. P., Sarthou, M., Stevenne, P., Bosman, B., Carnol, M., Fanara, S., Verbruggen, N., Hanikenne, M.

Date: 2025-06-30 · Version: 1
DOI: 10.1101/2025.06.26.661794

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study combined cell biology, transcriptomics, and ionomics to reveal that zinc deficiency reduces root apical meristem size while preserving meristematic activity and local Zn levels, leading to enhanced cell elongation and differentiation in Arabidopsis thaliana. ZIP12 was identified as a highly induced gene in the zinc‑deficient root tip, and zip12 mutants displayed impaired root growth, altered RAM structure, disrupted Zn‑responsive gene expression, and abnormal metal partitioning, highlighting ZIP12’s role in maintaining Zn homeostasis and meristem function.

zinc deficiency root apical meristem ZIP12 transcriptomics ionomics

Evolutionary origin and functional diversification of plant GBF1-type ARF guanine-nucleotide exchange factors

Authors: Singh, M. K., Lauster, T., Huhn, K., Richter, S., Kientz, M., Neher, R. A., Juergens, G.

Date: 2025-06-06 · Version: 1
DOI: 10.1101/2025.06.03.657657

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reconstructed the evolutionary history of plant-specific GBF1-type ARF-GEFs by building phylogenetic trees and ortho‑synteny groups, identifying orthologs of AtGNOM and AtGNL1 across species. Functional analyses using transgenic Arabidopsis lines and yeast two‑hybrid assays revealed how duplication and loss events diversified GNOM paralogs, separating polar recycling from secretory trafficking functions.

GBF1-type ARF‑GEF phylogenetic analysis ortho‑synteny polar recycling yeast two‑hybrid

Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis

Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.

Date: 2025-05-16 · Version: 1
DOI: 10.1101/2025.05.15.654287

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.

ascorbate Arabidopsis thaliana auxin biosynthesis redox homeostasis transcriptomics

Multilevel analysis of response to plant growth promoting and pathogenic bacteria in Arabidopsis roots and the role of CYP71A27 in this response

Authors: Koprivova, A., Ristova, D., Berka, M., Berkova, V., Türksoy, G. M., Andersen, T. G., Westhoff, P., Cerny, M., Kopriva, S.

Date: 2025-03-27 · Version: 1
DOI: 10.1101/2025.03.26.645393

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study compares transcriptional, proteomic, and metabolomic responses of wild‑type Arabidopsis and a cyp71A27 mutant to a plant‑growth‑promoting Pseudomonas fluorescens strain and a pathogenic Burkholderia glumeae strain, revealing distinct reprogramming and an unexpected signaling role for the non‑canonical P450 CYP71A27. Mutant analysis showed that loss of CYP71A27 alters gene and protein regulation, especially during interaction with the PGP bacterium, while having limited impact on root metabolites and exudates.

CYP71A27 plant‑microbe interaction Pseudomonas fluorescens CH267 Burkholderia glumeae PG1 transcriptomics

Transcriptomic insights into the role of miR394 in the regulation of flowering time in Arabidopsis thaliana

Authors: Belen, F., Bernardi, Y., Reutemann, A., Vegetti, A., Dotto, M. C.

Date: 2025-02-20 · Version: 1
DOI: 10.1101/2025.02.15.638417

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigates how miR394 influences flowering time in Arabidopsis thaliana by combining transcriptomic profiling of mir394a mir394b double mutants with histological analysis of reporter lines. Bioinformatic analysis identified a novel lncRNA overlapping MIR394B (named MIRAST), and differential promoter activity of MIR394A and MIR394B suggests miR394 fine‑tunes flower development through transcription factor and chromatin remodeler regulation.

miR394 flowering time Arabidopsis thaliana transcriptomics lncRNA