Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 15 Papers

A chloroplast-localized protein AT4G33780 regulates Arabidopsis development and stress-associated responses

Authors: Yang, Z.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.03.697459

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the chloroplast‑localized protein AT4G33780 in Arabidopsis thaliana using CRISPR/Cas9 knockout and overexpression lines, revealing tissue‑specific expression and context‑dependent effects on seed germination, seedling growth, vegetative development, and root responses to nickel stress. Integrated transcriptomic (RNA‑seq) and untargeted metabolomic analyses show extensive transcriptional reprogramming—especially of cell‑wall genes—and altered central energy metabolism, indicating AT4G33780 coordinates metabolic state with developmental regulation rather than controlling single pathways.

AT4G33780 chloroplast regulator Arabidopsis thaliana transcriptomics metabolomics

NT-C2-Dependent Phosphoinositide Binding Controls PLASTID MOVEMENT IMPAIRED1 Localization and Function

Authors: Cieslak, D., Staszalek, Z., Hermanowicz, P., Łabuz, J. M., Dobrowolska, G., Sztatelman, O.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697064

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the extended NT‑C2 domain of Plastid Movement Impaired 1 (PMI1) as the main membrane‑binding module that interacts with PI4P and PI(4,5)P2, requiring basic residues for plasma‑membrane association. Calcium binding by the NT‑C2 domain modulates its phosphoinositide preference, and cytosolic Ca2+ depletion blocks blue‑light‑induced PMI1 redistribution, indicating that both the NT‑C2 domain and adjacent intrinsically disordered regions are essential for PMI1’s role in chloroplast movement.

chloroplast movement PMI1 NT-C2 domain phosphoinositide binding calcium signaling

Ca2+ signature-dependent control of auxin sensitivity in Arabidopsis

Authors: Song, H., Baudon, A., Freund, M., Randuch, M., Pencik, A., Ondrej, N., He, Z., Kaufmann, K., Gilliham, M., Friml, J., Hedrich, R., Huang, S.

Date: 2025-10-05 · Version: 1
DOI: 10.1101/2025.10.04.680446

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study uses an optogenetic ChannelRhodopsin 2 variant (XXM2.0) to generate defined cytosolic Ca²⁺ transients in Arabidopsis root cells, revealing that these Ca²⁺ signatures suppress auxin‑induced membrane depolarization, Ca²⁺ spikes, and auxin‑responsive transcription, leading to reversible inhibition of cell division and elongation. This demonstrates that optogenetically imposed Ca²⁺ signals act as dynamic regulators of auxin sensitivity in roots.

auxin signaling calcium signaling optogenetics Arabidopsis root cell division inhibition

DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana

Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.

Date: 2025-08-26 · Version: 1
DOI: 10.1101/2025.08.21.671646

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.

heterosis DNA methylation DDM1 Arabidopsis thaliana transcriptomics

Jasmonate Primes Plant Responses to Extracellular ATP through Purinoceptor P2K1

Authors: Jewell, J. B., Carlton, A., Tolley, J. P., Bartley, L. E., Tanaka, K.

Date: 2025-08-12 · Version: 2
DOI: 10.1101/2024.11.07.622526

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that jasmonate (JA) enhances Arabidopsis thaliana responses to extracellular ATP (eATP) by upregulating the eATP receptor P2K1 and amplifying eATP‑induced cytosolic Ca²⁺ spikes and transcriptional reprogramming in a COI1‑dependent manner, whereas salicylic acid pretreatment suppresses these responses. These findings reveal a JA‑mediated priming mechanism that potentiates eATP signaling during stress.

extracellular ATP jasmonate signaling P2K1 receptor COI1 calcium signaling

A sublethal drought and rewatering time course reveals intricate patterning of responses in the annual Arabidopsis thaliana

Authors: Fitzek-Campbell, E., Psaroudakis, D., Weisshaar, B., Junker, A., Braeutigam, A.

Date: 2025-07-27 · Version: 1
DOI: 10.1101/2025.07.25.666782

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study applied a progressive, sublethal drought treatment to Arabidopsis thaliana, collecting time‑resolved phenotypic and transcriptomic data. Machine‑learning analysis revealed distinct drought stages driven by multiple overlapping transcriptional programs that intersect with plant aging, and identified high‑explanatory‑power transcripts as biomarkers rather than causal agents.

drought stress Arabidopsis thaliana transcriptomics high‑throughput phenotyping biomarker transcripts

Enhancement of Arabidopsis growth by Enterobacter sp. SA187 under elevated CO2 is dependent on ethylene signalling activation and primary metabolism reprogramming

Authors: Ilyas, A., Mauve, C., Pateyron, S., Paysant-Le Roux, C., Bigeard, J., Hodges, M., de Zelicourt, A.

Date: 2025-07-09 · Version: 1
DOI: 10.1101/2025.07.08.663752

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study shows that inoculating Arabidopsis thaliana with the plant‑growth‑promoting bacterium Enterobacter sp. SA187 markedly boosts root and shoot biomass under elevated CO₂, accompanied by altered nitrogen and carbon content and reshaped phytohormone signaling. Transcriptomic and metabolomic analyses reveal activation of salicylic acid, jasmonic acid, and ethylene pathways and enhanced primary metabolism, while the ethylene‑insensitive ein2‑1 mutant demonstrates that the growth benefits are ethylene‑dependent.

Enterobacter sp. SA187 elevated CO2 Arabidopsis thaliana phytohormone signaling transcriptomics

Zinc deficiency induces spatially distinct responses in roots and impacts ZIP12-dependent zinc homeostasis in Arabidopsis

Authors: Thiebaut, N., Persson, D. P., Sarthou, M., Stevenne, P., Bosman, B., Carnol, M., Fanara, S., Verbruggen, N., Hanikenne, M.

Date: 2025-06-30 · Version: 1
DOI: 10.1101/2025.06.26.661794

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study combined cell biology, transcriptomics, and ionomics to reveal that zinc deficiency reduces root apical meristem size while preserving meristematic activity and local Zn levels, leading to enhanced cell elongation and differentiation in Arabidopsis thaliana. ZIP12 was identified as a highly induced gene in the zinc‑deficient root tip, and zip12 mutants displayed impaired root growth, altered RAM structure, disrupted Zn‑responsive gene expression, and abnormal metal partitioning, highlighting ZIP12’s role in maintaining Zn homeostasis and meristem function.

zinc deficiency root apical meristem ZIP12 transcriptomics ionomics

The CATION CALCIUM EXCHANGER 4 (CCX4) regulates LRX1-related root hair development through Ca2+ homeostasis

Authors: Hou, X., Tortora, G., Herger, A., Buratti, S., Dobrev, P. I., Vaculikov, R., Lacek, J., Sotiropoulos, A. G., Kadler, G., Schaufelberger, M., Candeo, A., Bassi, A., Wicker, T., Costa, A., Ringli, C.

Date: 2025-06-27 · Version: 1
DOI: 10.1101/2025.06.25.660713

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identified a suppressor mutation (sune42) in the Golgi-localized Ca2+ transporter CCX4 that alleviates the dominant‑negative root hair phenotype caused by the extensin‑less LRX1ΔE14 protein in Arabidopsis. Detailed Ca2+ imaging showed that LRX1ΔE14 disrupts tip‑focused cytoplasmic Ca2+ oscillations, a defect rescued by the sune42 mutation, highlighting the role of Golgi‑mediated Ca2+ homeostasis in root hair growth.

calcium signaling root hair development LRX1 extensin domain CCX4 Golgi transporter Ca2+ homeostasis

Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis

Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.

Date: 2025-05-16 · Version: 1
DOI: 10.1101/2025.05.15.654287

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.

ascorbate Arabidopsis thaliana auxin biosynthesis redox homeostasis transcriptomics
Page 1 of 2 Next