The study characterized the virome of Tamarillo (Solanum betaceum) across eight locations in Narino, Colombia, revealing up to four virus species from the Torradovirus, Potyvirus, and Polerovirus genera, including the first report of a torradovirus in tamarillo. A novel isolate of potato virus Y‑Tamarillo (PVY‑Tam) with unique P3N‑PIPO protein truncations was identified, suggesting host‑specific adaptation and informing future diagnostic and control strategies.
The study used RNA‑seq to compare early transcriptional responses to acute heat and cold stress in cultivated cranberry (Vaccinium macrocarpon) and its F1 hybrids with the cold‑adapted wild relative V. oxycoccos. Cold stress triggered differential expression in pathways such as photosynthesis, ribosomes, defense, and hormone signaling, with some hybrids showing transiently elevated cold‑responsive expression, suggesting potential cold‑tolerance introgression. The results highlight the utility of wild germplasm for breeding temperature‑resilient cranberries.
Enhancement of Arabidopsis growth by Enterobacter sp. SA187 under elevated CO2 is dependent on ethylene signalling activation and primary metabolism reprogramming
Authors: Ilyas, A., Mauve, C., Pateyron, S., Paysant-Le Roux, C., Bigeard, J., Hodges, M., de Zelicourt, A.
The study shows that inoculating Arabidopsis thaliana with the plant‑growth‑promoting bacterium Enterobacter sp. SA187 markedly boosts root and shoot biomass under elevated CO₂, accompanied by altered nitrogen and carbon content and reshaped phytohormone signaling. Transcriptomic and metabolomic analyses reveal activation of salicylic acid, jasmonic acid, and ethylene pathways and enhanced primary metabolism, while the ethylene‑insensitive ein2‑1 mutant demonstrates that the growth benefits are ethylene‑dependent.
The study examined soybean (Glycine max) responses to simultaneous drought and Asian soybean rust infection using combined transcriptomic and metabolomic analyses. Weighted Gene Co-expression Network Analysis identified stress-specific gene modules linked to metabolites, while Copula Graphical Models uncovered sparse, condition‑specific networks, revealing distinct molecular signatures for each stress without overlapping genes or metabolites. The integrative approach underscores a hierarchical, modular defense architecture and suggests targets for breeding multi‑stress resilient soybeans.
Authors: Orosz, J., Lin, E. X., Torres Ascurra, Y. C., Kappes, M., Lindsay, P. L., Bashyal, S., Everett, H., Gautam, C. K., Jackson, D., Mueller, L. M.
The study identifies the pseudokinase CRN in Medicago truncatula as a regulator of inflorescence meristem branching and a negative modulator of root interactions with arbuscular mycorrhizal (AM) fungi, operating partially independently of the AM autoregulation CLE peptide MtCLE53. Transcriptomic profiling of crn mutant roots reveals disruptions in nutrient, symbiosis, and stress signaling pathways, highlighting the multifaceted role of MtCRN in plant development and environmental interactions.
The study examined how varying temperature regimes, including cold deprivation and early cold exposure, affect dormancy onset and maintenance in sweet cherry (Prunus avium) flower buds. Phenological monitoring combined with transcriptomic analyses revealed that temperature drives dormancy progression, identifying specific genes and pathways responsive to cold, and uncovering a distinct shallow dormancy phase induced by cold deprivation with a unique molecular signature.
The study combined cell biology, transcriptomics, and ionomics to reveal that zinc deficiency reduces root apical meristem size while preserving meristematic activity and local Zn levels, leading to enhanced cell elongation and differentiation in Arabidopsis thaliana. ZIP12 was identified as a highly induced gene in the zinc‑deficient root tip, and zip12 mutants displayed impaired root growth, altered RAM structure, disrupted Zn‑responsive gene expression, and abnormal metal partitioning, highlighting ZIP12’s role in maintaining Zn homeostasis and meristem function.
Transcriptomic analysis of genotypes derived from Rosa wichurana unveils molecular mechanisms associated with quantitative resistance to Diplocarpon rosae
The study investigated the molecular basis of quantitative resistance to black spot disease in a Rosa wichurana × Rosa chinensis F1 population, identifying two major QTLs (B3 on LG3 and B5 on LG5). RNA‑seq of inoculated and control leaf samples at 0, 3, and 5 days post‑inoculation revealed extensive transcriptional reprogramming, with QTL B3 triggering classic defense pathways and QTL B5 showing a limited, distinct response. These findings highlight complex, QTL‑specific regulation underlying durable black‑spot resistance in roses.
The study used transcriptomic and lipidomic profiling to investigate how chia (Salvia hispanica) leaves respond to short‑term (3 h) and prolonged (27 h) heat stress at 38 °C, revealing rapid activation of calcium‑signaling and heat‑shock pathways and reversible changes in triacylglycerol levels. Nearly all heat‑responsive genes returned to baseline expression after 24 h recovery, highlighting robust thermotolerance mechanisms that could inform improvement of other oilseed crops.
Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis
Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.
The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.