Ethylene Receptor Gain- and Loss-of-function Mutants Reveal an ETR1-dependent Transcriptional Network in Roots
Authors: White, M. G., Harkey, A., Muhlemann, J. K., Olex, A. L., Pfeffer, N. J., Houben, M., Binder, B., Muday, G. K.
Category: Plant Biology
Model Organism: Arabidopsis thaliana
▶ AI Summary
The study profiled root transcriptomes of Arabidopsis wild type and etr1 gain-of-function (etr1-3) and loss-of-function (etr1-7) mutants under ethylene or ACC treatment, identifying 4,522 ethylene‑responsive transcripts, including 553 that depend on ETR1 activity. ETR1‑dependent genes encompassed ethylene biosynthesis enzymes (ACO2, ACO3) and transcription factors, whose expression was further examined in an ein3eil1 background, revealing that both ETR1 and EIN3/EIL1 pathways regulate parts of the network controlling root hair proliferation and lateral root formation.