The study examined how single and repeated mechanical disturbances (whole‑pot drops) affect leaf folding in Mimosa pudica, using chlorophyll fluorescence to track photosystem II efficiency and transcriptome profiling to identify responsive genes. A single drop mainly up‑regulated flavonoid biosynthesis genes, whereas multiple drops triggered broader biotic and abiotic stress pathways, indicating a shift in the plant’s gene regulatory network under repeated stress.
Enhancement of Arabidopsis growth by Enterobacter sp. SA187 under elevated CO2 is dependent on ethylene signalling activation and primary metabolism reprogramming
Authors: Ilyas, A., Mauve, C., Pateyron, S., Paysant-Le Roux, C., Bigeard, J., Hodges, M., de Zelicourt, A.
The study shows that inoculating Arabidopsis thaliana with the plant‑growth‑promoting bacterium Enterobacter sp. SA187 markedly boosts root and shoot biomass under elevated CO₂, accompanied by altered nitrogen and carbon content and reshaped phytohormone signaling. Transcriptomic and metabolomic analyses reveal activation of salicylic acid, jasmonic acid, and ethylene pathways and enhanced primary metabolism, while the ethylene‑insensitive ein2‑1 mutant demonstrates that the growth benefits are ethylene‑dependent.
The study examined soybean (Glycine max) responses to simultaneous drought and Asian soybean rust infection using combined transcriptomic and metabolomic analyses. Weighted Gene Co-expression Network Analysis identified stress-specific gene modules linked to metabolites, while Copula Graphical Models uncovered sparse, condition‑specific networks, revealing distinct molecular signatures for each stress without overlapping genes or metabolites. The integrative approach underscores a hierarchical, modular defense architecture and suggests targets for breeding multi‑stress resilient soybeans.
The study used label-free quantitative proteomics to profile protein abundance changes in Arabidopsis thaliana shoots and roots after phosphate resupply following prolonged deficiency, identifying ~2,700 differentially abundant proteins. Early (1 h) responses involved rapid metabolic adjustments to restore Pi pools, while later (48 h) responses shifted toward anabolic processes such as nucleotide synthesis and membrane remodeling, revealing tissue- and time‑specific regulatory patterns.
Authors: Orosz, J., Lin, E. X., Torres Ascurra, Y. C., Kappes, M., Lindsay, P. L., Bashyal, S., Everett, H., Gautam, C. K., Jackson, D., Mueller, L. M.
The study identifies the pseudokinase CRN in Medicago truncatula as a regulator of inflorescence meristem branching and a negative modulator of root interactions with arbuscular mycorrhizal (AM) fungi, operating partially independently of the AM autoregulation CLE peptide MtCLE53. Transcriptomic profiling of crn mutant roots reveals disruptions in nutrient, symbiosis, and stress signaling pathways, highlighting the multifaceted role of MtCRN in plant development and environmental interactions.
The study examined how varying temperature regimes, including cold deprivation and early cold exposure, affect dormancy onset and maintenance in sweet cherry (Prunus avium) flower buds. Phenological monitoring combined with transcriptomic analyses revealed that temperature drives dormancy progression, identifying specific genes and pathways responsive to cold, and uncovering a distinct shallow dormancy phase induced by cold deprivation with a unique molecular signature.
The study combined cell biology, transcriptomics, and ionomics to reveal that zinc deficiency reduces root apical meristem size while preserving meristematic activity and local Zn levels, leading to enhanced cell elongation and differentiation in Arabidopsis thaliana. ZIP12 was identified as a highly induced gene in the zinc‑deficient root tip, and zip12 mutants displayed impaired root growth, altered RAM structure, disrupted Zn‑responsive gene expression, and abnormal metal partitioning, highlighting ZIP12’s role in maintaining Zn homeostasis and meristem function.
The study provides direct evidence for a chloroplast unfolded protein response (cpUPR) by expressing engineered, folding‑defective ferredoxin‑NADP reductase variants in plant chloroplasts, which induced upregulation of chloroplast quality‑control proteins. Quantitative proteomics showed that the response magnitude correlated with the severity of protein misfolding, and misfolded‑protein expression conferred heat‑tolerance, highlighting cpUPR as a specific stress response that can improve plant fitness.
The study used transcriptomic and lipidomic profiling to investigate how chia (Salvia hispanica) leaves respond to short‑term (3 h) and prolonged (27 h) heat stress at 38 °C, revealing rapid activation of calcium‑signaling and heat‑shock pathways and reversible changes in triacylglycerol levels. Nearly all heat‑responsive genes returned to baseline expression after 24 h recovery, highlighting robust thermotolerance mechanisms that could inform improvement of other oilseed crops.
The study characterizes the protein and lipid composition of chloroplast plastoglobules in the B73 maize line during a water-deficit and recovery time course, identifying key polar and neutral lipids and abundant fibrillin proteins. Quantitative proteomics revealed a strong association between Fibrillin 4 and plastoquinone‑9, suggesting a role in redox and prenyl‑lipid metabolism, thereby establishing a foundation for leveraging plastoglobules to enhance crop drought resilience.