In vivo binding by Arabidopsis SPLICING FACTOR 1 shifts 3' splice site choice, regulating circadian rhythms and immunity in plants
Authors: Agrofoglio, Y. C., Iglesias, M. J., de Leone, M. J., Hernando, C. E., Lewinski, M., Torres, S. B., Contino, G., Yanovsky, M. J., Staiger, D., Mateos, J. L.
The study characterizes the plant spliceosomal protein AtSF1 in Arabidopsis thaliana, using iCLIP and RNA‑seq to map its in vivo branch point binding sites and demonstrate that loss of AtSF1 causes widespread 3' splice‑site mis‑selection. Structural comparison reveals a plant‑specific domain architecture, and the identified AtSF1 targets are enriched for circadian and defense genes, linking splicing regulation to timing and immunity.
Using ten Phaeodactylum tricornutum mutant strains with graded constitutive Lhcx1 expression, the study links NPQ induction under high light to physiological outcomes (oxidized QA, increased cyclic electron flow) and extensive transcriptomic reprogramming, affecting nearly half the genome. The approach demonstrates that higher NPQ mitigates PSII damage, boosts ATP production for repair, and drives distinct gene regulatory networks, providing a model framework for dissecting photosynthetic and gene expression integration.
The study establishes a tractable system using the large bloom-forming diatom Coscinodiscus granii and its natural oomycete parasite Lagenisma coscinodisci, enabling manual isolation of single host cells and stable co-cultures. High‑quality transcriptomes for both partners were assembled, revealing diverse oomycete effectors and a host transcriptional response involving proteases and exosome pathways, while also profiling the co‑occurring heterotrophic flagellate Pteridomonas sp. This tripartite platform provides a unique marine model for dissecting molecular mechanisms of oomycete‑diatom interactions.
Splicing regulation by RS2Z36 controls ovary patterning and fruit growth in tomato
Authors: Vraggalas, S., Rosenkranz, R. R., Keller, M., Perez-Perez, Y., Bachiri, S., Zehl, K., Bold, J., Simm, S., Ghatak, A., Weckwerth, W., Afjehi-Sadat, L., Chaturvedi, P., Testillano, P. S., Mueller-McNicoll, M., Zarnack, K., Fragkostefanakis, S.
The study identifies the serine/arginine-rich splicing factor RS2Z36 as a key regulator of ovary patterning and early fruit morphology in tomato, with loss‑of‑function mutants producing smaller, ellipsoid fruits and elongated pericarp cells. RNA‑seq and proteomic analyses reveal widespread alternative splicing and altered protein abundance, including novel splice‑variant peptides, while mutant pericarps show increased deposition of LM6‑detected arabinan and AGP epitopes.
The study functionally characterizes a conserved structured RNA motif (45ABC) in Arabidopsis RBP45 pre‑mRNAs, showing that its sequence and pairing elements mediate a negative auto‑ and cross‑regulatory feedback loop through alternative splicing that produces unproductive isoforms and reduces RBP45 expression. Transcriptome‑wide splicing analysis and phenotypic assessment of rbp45 mutants reveal that RBP45B plays a dominant role and that proper regulation of this motif is essential for root growth and flowering time.
Identification of a putative RBOHD-FERONIA-CRK10-PIP2;6 plasma membrane complex that interacts with phyB to regulate ROS production in Arabidopsis thaliana
Authors: Mohanty, D., Fichman, Y., Pelaez-Vico, M. A., Myers, R. J., Sealander, M., Sinha, R., Morrow, J., Eckstein, R., Olson, K., Xu, C., An, H., Yoo, C. Y., Zhu, J.-K., Zhao, C., Zandalinas, S. I., Liscum, E., Mittler, R.
The study demonstrates that FERONIA and phytochrome B physically interact with the NADPH oxidase RBOHD, and that FERONIA-mediated phosphorylation of phyB is essential for RBOHD-driven ROS production under excess light stress in Arabidopsis thaliana. Additional membrane proteins CRK10 and PIP2;6 also associate with this complex, forming a plasma‑membrane assembly that integrates multiple signaling pathways to regulate stress‑induced ROS.
Proline transporters balance the salicylic acid-mediated trade-off between regeneration and immunity in plants
Authors: Yang, L., Xu, D., Belew, Z. M., Cassia Ferreira Dias, N., Wang, L., Zhang, A., Chen, Y.-F. S., Newton, C. J., Kong, F., Zheng, Y., Yao, Y., Brewer, M. T., Teixeira, P. J. P. L., Nour-Eldin, H. H., Xu, D.
The study identifies wound‑induced proline transporters ProT2 and ProT3 as central regulators that link salicylic acid signaling to the suppression of de novo root regeneration (DNRR) via modulation of reactive oxygen species dynamics. Genetic loss of these transporters or pharmacological inhibition of proline transport alleviates SA‑mediated regeneration inhibition across several plant species without compromising disease resistance.
The study evaluated a transgenic soybean line (VPZ-34A) expressing Arabidopsis VDE, PsbS, and ZEP for combined improvements in light‑use efficiency and carbon assimilation under ambient and elevated CO2 in a FACE experiment. While VPZ‑34A showed enhanced maximum quantum efficiency of PSII under fluctuating light, it did not increase carbon assimilation efficiency or yield, and transcriptome analysis revealed limited gene expression changes. The results suggest that VPZ‑mediated photosynthetic gains are insufficient to boost productivity under elevated CO2.
The study investigates the role of the chromatin regulator MpSWI3, a core subunit of the SWI/SNF complex, in the liverwort Marchantia polymorpha. A promoter mutation disrupts male gametangiophore development and spermiogenesis, causing enhanced vegetative propagation, and transcriptomic analysis reveals that MpSWI3 regulates genes controlling reproductive initiation, sperm function, and asexual reproduction, highlighting its ancient epigenetic role in balancing vegetative and reproductive phases.
The study examined how Arabidopsis calcium‑dependent protein kinases AtCPK5 and AtCPK6 modulate immunity triggered by bacterial rhamnolipids, finding that RLs up‑regulate these kinases and that mutants, especially cpk5/6, show altered reactive oxygen species production and defense gene expression. However, these kinases did not influence RL‑induced electrolyte leakage or resistance to Pseudomonas syringae pv. tomato DC3000, indicating additional signaling components are involved.