The study examined how single and repeated mechanical disturbances (whole‑pot drops) affect leaf folding in Mimosa pudica, using chlorophyll fluorescence to track photosystem II efficiency and transcriptome profiling to identify responsive genes. A single drop mainly up‑regulated flavonoid biosynthesis genes, whereas multiple drops triggered broader biotic and abiotic stress pathways, indicating a shift in the plant’s gene regulatory network under repeated stress.
Enhancement of Arabidopsis growth by Enterobacter sp. SA187 under elevated CO2 is dependent on ethylene signalling activation and primary metabolism reprogramming
Authors: Ilyas, A., Mauve, C., Pateyron, S., Paysant-Le Roux, C., Bigeard, J., Hodges, M., de Zelicourt, A.
The study shows that inoculating Arabidopsis thaliana with the plant‑growth‑promoting bacterium Enterobacter sp. SA187 markedly boosts root and shoot biomass under elevated CO₂, accompanied by altered nitrogen and carbon content and reshaped phytohormone signaling. Transcriptomic and metabolomic analyses reveal activation of salicylic acid, jasmonic acid, and ethylene pathways and enhanced primary metabolism, while the ethylene‑insensitive ein2‑1 mutant demonstrates that the growth benefits are ethylene‑dependent.
The study examined soybean (Glycine max) responses to simultaneous drought and Asian soybean rust infection using combined transcriptomic and metabolomic analyses. Weighted Gene Co-expression Network Analysis identified stress-specific gene modules linked to metabolites, while Copula Graphical Models uncovered sparse, condition‑specific networks, revealing distinct molecular signatures for each stress without overlapping genes or metabolites. The integrative approach underscores a hierarchical, modular defense architecture and suggests targets for breeding multi‑stress resilient soybeans.
Using integrated metabolomics, fluxomics, and proteomics, the study shows that Bamboo mosaic virus infection in Nicotiana benthamiana redirects carbon flux toward glycolysis and the TCA cycle, enhancing mitochondrial metabolism. Silencing the mitochondrial NAD⁺-dependent malic enzyme 1 disrupts cytoplasmic NADH/NAD⁺ balance and alters defense gene expression, indicating that mitochondrial redox regulation is crucial for antiviral defense.
The study investigated whether wheat homoeologous genes actively compensate for each other when one copy acquires a premature termination codon (PTC) mutation. By analyzing mutagenised wheat lines, the authors found that only about 3% of cases exhibited upregulation of the unaffected homoeolog, indicating that widespread active transcriptional compensation is absent in wheat.
Authors: Orosz, J., Lin, E. X., Torres Ascurra, Y. C., Kappes, M., Lindsay, P. L., Bashyal, S., Everett, H., Gautam, C. K., Jackson, D., Mueller, L. M.
The study identifies the pseudokinase CRN in Medicago truncatula as a regulator of inflorescence meristem branching and a negative modulator of root interactions with arbuscular mycorrhizal (AM) fungi, operating partially independently of the AM autoregulation CLE peptide MtCLE53. Transcriptomic profiling of crn mutant roots reveals disruptions in nutrient, symbiosis, and stress signaling pathways, highlighting the multifaceted role of MtCRN in plant development and environmental interactions.
The study examined how varying temperature regimes, including cold deprivation and early cold exposure, affect dormancy onset and maintenance in sweet cherry (Prunus avium) flower buds. Phenological monitoring combined with transcriptomic analyses revealed that temperature drives dormancy progression, identifying specific genes and pathways responsive to cold, and uncovering a distinct shallow dormancy phase induced by cold deprivation with a unique molecular signature.
The study combined cell biology, transcriptomics, and ionomics to reveal that zinc deficiency reduces root apical meristem size while preserving meristematic activity and local Zn levels, leading to enhanced cell elongation and differentiation in Arabidopsis thaliana. ZIP12 was identified as a highly induced gene in the zinc‑deficient root tip, and zip12 mutants displayed impaired root growth, altered RAM structure, disrupted Zn‑responsive gene expression, and abnormal metal partitioning, highlighting ZIP12’s role in maintaining Zn homeostasis and meristem function.
Overexpression of the wheat bHLH transcription factor TaPGS1 leads to increased flavonol accumulation in the seed coat, which disrupts polar auxin transport and causes localized auxin accumulation, delaying endosperm cellularization and increasing cell number, thereby enlarging grain size. Integrated metabolomic and transcriptomic analyses identified upregulated flavonol biosynthetic genes, revealing a regulatory module that links flavonol-mediated auxin distribution to seed development in wheat.
Multi-Omics Analysis of Heat Stress-Induced Memory in Arabidopsis
Authors: Thirumlaikumar, V. P. P., Yu, L., Arora, D., Mubeen, U., Wisniewski, A., Walther, D., Giavalisco, P., Alseekh, S., DL Nelson, A., Skirycz, A., Balazadeh, S.
The study uses a high‑throughput comparative multi‑omics strategy to profile transcript, metabolite, and protein dynamics in Arabidopsis thaliana seedlings throughout the heat‑stress memory (HSM) phase following acquired thermotolerance. Early recovery stages show rapid transcriptional activation of memory‑related genes, while protein levels stay elevated longer, and distinct metabolite patterns emerge, highlighting temporal layers of the memory process.