The study establishes a tractable system using the large bloom-forming diatom Coscinodiscus granii and its natural oomycete parasite Lagenisma coscinodisci, enabling manual isolation of single host cells and stable co-cultures. High‑quality transcriptomes for both partners were assembled, revealing diverse oomycete effectors and a host transcriptional response involving proteases and exosome pathways, while also profiling the co‑occurring heterotrophic flagellate Pteridomonas sp. This tripartite platform provides a unique marine model for dissecting molecular mechanisms of oomycete‑diatom interactions.
The study demonstrates that salinity stress induces a photomorphogenic‑like response in dark‑grown Arabidopsis thaliana seedlings, resulting in reduced apical hook curvature and impaired soil emergence. This phenotype is linked to disrupted asymmetric epidermal cell elongation, decreased auxin signaling and PIN3 abundance on the hook’s concave side, repression of BBX28 expression, and loss of a spatial COP1 gradient, highlighting spatial regulation as a key factor in stress‑affected seedling development.
HDA19-mediated deacetylation of histone H3.3 lysine 27 and 36 regulates plant sensitivity to salt stress
Authors: Kotnik, F., Ueda, M., Ito, A., Ishida, J., Sakai, K., Takagi, H., Seidel, J., Abe, T., Eirich, J., Takahashi, S., Schwarzer, D., Seki, M., Finkemeier, I.
The study identifies a non‑canonical H3.3 K27/K36 di‑acetylation mark as a specific substrate of the histone deacetylase HDA19, whose removal under salinity stress is impaired in hda19 mutants, leading to increased LEA protein accumulation and enhanced salt tolerance. Mimicking this di‑acetylation via K→Q substitutions reproduces the hda19 phenotype, and loss of key LEA genes abolishes the tolerance, establishing H3.3 di‑acetylation as a core epigenetic mechanism for stress resilience in Arabidopsis.
The study evaluated a transgenic soybean line (VPZ-34A) expressing Arabidopsis VDE, PsbS, and ZEP for combined improvements in light‑use efficiency and carbon assimilation under ambient and elevated CO2 in a FACE experiment. While VPZ‑34A showed enhanced maximum quantum efficiency of PSII under fluctuating light, it did not increase carbon assimilation efficiency or yield, and transcriptome analysis revealed limited gene expression changes. The results suggest that VPZ‑mediated photosynthetic gains are insufficient to boost productivity under elevated CO2.
Integrating physiological, transcriptomic, and cellular analyses, the study shows that olive fruit abscission zones undergo lignification, alkalization, and extensive cell‑wall remodeling during natural maturation and after ethephon treatment. A set of 733 FAZ‑specific genes, including β‑1,3‑glucanases, pectate lyases, and pH‑regulating transporters, were identified, and increased glucanase activity together with reduced plasmodesmata callose suggest enhanced intercellular communication facilitates organ detachment in this non‑climacteric fruit.
The study investigated how barley (Hordeum vulgare) adjusts mitochondrial respiration under salinity stress using physiological, biochemical, metabolomic and proteomic approaches. Salt treatment increased respiration and activated the canonical TCA cycle, while the GABA shunt remained largely inactive, contrasting with wheat responses.
The study investigates the role of the chromatin regulator MpSWI3, a core subunit of the SWI/SNF complex, in the liverwort Marchantia polymorpha. A promoter mutation disrupts male gametangiophore development and spermiogenesis, causing enhanced vegetative propagation, and transcriptomic analysis reveals that MpSWI3 regulates genes controlling reproductive initiation, sperm function, and asexual reproduction, highlighting its ancient epigenetic role in balancing vegetative and reproductive phases.
Unravelling the intraspecific variation in drought responses in seedlings of European black pine (Pinus nigra J.F. Arnold)
Authors: Ahmad, M., Hammerbacher, A., Priemer, C., Ciceu, A., Karolak, M., Mader, S., Olsson, S., Schinnerl, J., Seitner, S., Schoendorfer, S., Helfenbein, P., Jakub, J., Breuer, M., Espinosa, A., Caballero, T., Ganthaler, A., Mayr, S., Grosskinsky, D. K., Wienkoop, S., Schueler, S., Trujillo-Moya, C., van Loo, M.
The study examined drought tolerance across nine provenances of the conifer Pinus nigra using high‑throughput phenotyping combined with metabolomic and transcriptomic analyses under controlled soil‑drying conditions. Drought tolerance, measured by the decline in Fv/Fm, varied among provenances but was not linked to a climatic gradient and was independent of growth, with tolerant provenances showing distinct flavonoid and diterpene profiles and provenance‑specific gene expression patterns. Integrating phenotypic and molecular data revealed metabolic signatures underlying drought adaptation in this non‑model conifer.
The study demonstrates that limonene, a natural essential‑oil component, strongly inhibits Fusarium oxysporum, the causal agent of potato dry rot, by impairing colony growth, hyphal morphology, spore viability, membrane integrity, and transcription/translation processes, as well as disrupting ion homeostasis. Combined treatments reveal additive effects with mancozeb and synergistic effects with hymexazol, highlighting limonene's potential as an eco‑friendly bio‑fungicide for potato disease management.
Trichoderma afroharzianum behaves differently with respect to the host transcriptome and microbial communities under varying iron availability in pea plants
Authors: Kabir, A. H., Thapa, A., Ara Saiful, S. A., Talukder, S. K.
The study examined how the bioinoculant Trichoderma afroharzianum T22 influences Pisum sativum growth under iron-sufficient versus iron-deficient conditions, finding pronounced benefits—enhanced photosynthesis, Fe/N accumulation, and stress‑related gene expression—only during iron deficiency. RNA‑seq revealed distinct gene expression patterns tied to symbiosis, iron transport, and redox pathways, and microbiome profiling showed T22 reshapes the root bacterial community under deficiency, suggesting context‑dependent mutualism.