The study applied the STOmics spatial transcriptomics platform to map gene expression at subcellular resolution in developing wheat (Triticum aestivum) seeds during grain filling, analyzing over four million transcripts. Eight functional cellular groups were identified, including four distinct endosperm clusters with radial expression patterns and novel marker genes, and subgenome‑biased expression was observed among specific paralogs. These results highlight spatial transcriptomics as a powerful tool for uncovering tissue‑specific and polyploid‑specific gene regulation in seeds.
Spatial and single-cell transcriptomics capture two distinct cell states in plant immunity
Authors: Hu, Y., Schaefer, R., Rendleman, M., Slattery, A., Cramer, A., Nahiyan, A., Breitweiser, L., Shah, M., Kaehler, E., Yao, C., Bowling, A., Crow, J., May, G., Tabor, G., Thatcher, S., Uppalapati, S. R., Muppirala, U., Deschamps, S.
The study combined spatial transcriptomics and single-nuclei RNA sequencing to map soybean (Glycine max) responses to Asian soybean rust caused by Phakopsora pachyrhizi, revealing two distinct host cell states: pathogen‑occupied regions and adjacent non‑infected regions that show heightened defense gene expression. Gene co‑expression network analysis identified a key immune‑related module active in the stressed cells, highlighting a cell‑non‑autonomous defense mechanism.
The study used transcriptomic and lipidomic profiling to investigate how chia (Salvia hispanica) leaves respond to short‑term (3 h) and prolonged (27 h) heat stress at 38 °C, revealing rapid activation of calcium‑signaling and heat‑shock pathways and reversible changes in triacylglycerol levels. Nearly all heat‑responsive genes returned to baseline expression after 24 h recovery, highlighting robust thermotolerance mechanisms that could inform improvement of other oilseed crops.
Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis
Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.
The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.
Imputation integrates single-cell and spatial gene expression data to resolve transcriptional networks in barley shoot meristem development
Authors: Demesa-Arevalo, E., Dorpholz, H., Vardanega, I., Maika, J. E., Pineda-Valentino, I., Eggels, S., Lautwein, T., Kohrer, K., Schnurbusch, T., von Korff, M., Usadel, B., Simon, R.
The study uses an imputation strategy that integrates deep single-cell RNA sequencing with spatial gene expression data to map transcriptional dynamics across barley inflorescence development at cellular resolution. By leveraging the BARVISTA web interface, the authors identify key transcriptional events in meristem founder cells, characterize complex branching mutants, and reconstruct spatio‑temporal trajectories of flower organogenesis, offering insights for targeted trait manipulation.
Comparative multi-omics profiling of Gossypium hirsutum and Gossypium barbadense fibers at high temporal resolution reveals key differences in polysaccharide composition and associated glycosyltransferases
Authors: Swaminathan, S., Lee, Y., Grover, C. E., DeTemple, M. F., Mugisha, A. S., Sichterman, L. E., Yang, P., Xie, J., Wendel, J. F., Szymanski, D. B., Zabotina, O. A.
The study performed daily large-scale glycome, transcriptome, and proteome profiling of developing fibers from the two cultivated cotton species, Gossypium barbadense and G. hirsutum, across primary and secondary cell wall stages. It identified delayed cellulose accumulation and distinct compositions of xyloglucans, homogalacturonans, rhamnogalacturonan‑I, and heteroxylans in G. barbadense, along with higher expression of specific glycosyltransferases and expansins, suggesting these molecular differences underlie the superior fiber length and strength of G. barbadense.
The study evaluated how acute heat stress affects early-stage rice seedlings, identifying a critical temperature threshold that impairs growth. Transcriptomic profiling of shoots and roots revealed ethylene‑responsive factors (ERFs) as central regulators, with ethylene and jasmonic acid acting upstream, and pre‑treatment with these hormones mitigated heat damage. These findings highlight ERF‑hormone interaction networks as targets for improving rice heat resilience.
Using the Euphorbia peplus genome, the authors performed organ‑specific transcriptomic profiling of the cyathium and combined it with gene phylogenies and dN/dS analysis to investigate floral‑development gene families. They found distinct SEP1 paralog expression, lack of E‑class gene duplications typical of other pseudanthia, and divergent expression patterns for CRC, UFO, LFY, AP3, and PI, suggesting unique developmental pathways in Euphorbia.
The study shows that heatwaves impair the ability of apple (Malus domestica) to mount ASM‑induced immunity against fire blight and apple scab, leading to a loss of protective gene expression. Transcriptomic analysis revealed a broad suppression of ASM‑regulated defense and other biological processes under high temperature, identifying thermo‑sensitive resistance and susceptibility marker genes. The findings highlight that elevated temperature both weakens plant defenses and creates a more favorable environment for pathogens.
The study identified a major QTL (qDTH3) on chromosome 3 responsible for a 7‑10‑day earlier heading phenotype in the rice line SM93, using QTL‑seq, KASP genotyping, association mapping, and transcriptomic analysis to fine‑map the locus to a 2.53 Mb region and pinpoint candidate genes. SNP markers linked to these genes were proposed as tools for breeding early‑maturing, climate‑resilient rice varieties.