The study isolated an endophytic Pseudomonas aeruginosa strain (SPT08) from tomato cotyledon seedlings that suppressed the wilt pathogen Ralstonia pseudosolanacearum and promoted plant growth, increasing height by 20% and root biomass by 60%. GFP labeling confirmed endophytic colonization, and genomic analysis revealed multiple secretion systems and secondary‑metabolite gene clusters associated with biocontrol and growth‑promoting traits.
Introducing furanocoumarin biosynthetic genes in tomato results in coumarins accumulation and impacted growth
Authors: Bouille, A., Villard, C., Galati, G., Roumani, M., Fauvet, A., Grosjean, J., Hoengenaert, L., Boerjan, W., Ralph, J., Hilliou, F., Robin, C., Hehn, A., Larbat, R.
The study engineered the linear furanocoumarin pathway in tomato by integrating four biosynthetic genes, aiming to produce psoralen, but instead generated coumarins such as scopoletin. Morphophysiological, metabolomic, and transcriptomic analyses revealed that even low levels of these coumarins can influence plant growth and physiology, highlighting both benefits and costs of coumarin accumulation in crops.
The study investigates hormetic responses of tomato (Solanum lycopersicum) seedlings to low‑dose cadmium, demonstrating enhanced growth through morphological, biochemical, and histochemical analyses. Transcriptomic profiling revealed differential expression of oxidoreductase genes, signaling components, and several long non‑coding RNAs (lncRNAs) that generate miRNAs (sly‑MIR396a and sly‑MIR1063g), which modulate target genes to promote growth. In‑silico analyses of lncRNA targets and miRNA precursors provide mechanistic insight into cadmium‑induced hormesis and its potential for crop improvement.
Tomato leaf transcriptomic changes promoted by long-term water scarcity stress can be largely prevented by a fungal-based biostimulant
Authors: Lopez-Serrano, L., Ferez-Gomez, A., Romero-Aranda, R., Jaime Fernandez, E., Leal Lopez, J., Fernandez Baroja, E., Almagro, G., Dolezal, K., Novak, O., Diaz, L., Bautista, R., Leon Morcillo, R. J., Pozueta Romero, J.
Foliar application of Trichoderma harzianum cell‑free culture filtrates (CF) increased fruit yield, root growth, and photosynthesis in a commercial tomato cultivar under prolonged water deficit in a Mediterranean greenhouse. Integrated physiological, metabolite, and transcriptomic analyses revealed that CF mitigated drought‑induced changes, suppressing about half of water‑stress responsive genes, thereby reducing the plant’s transcriptional sensitivity to water scarcity.
Exogenous Hormone Treatments Reveal Species-Specific Regulation of Individual Components of Root Architecture and Salt Ion Accumulation in Cultivated and Wild Tomatoes
Authors: Rahmati-Ishka, M., Craft, E., Pineros, M., Julkowska, M. M.
The study examined how individual hormone treatments (auxin, ethylene, gibberellin) influence root architecture and ion accumulation under salt stress in three tomato accessions, revealing species-specific hormonal effects on lateral root development and Na/K ratios. Genetic analyses using Arabidopsis mutants and a tomato ethylene‑perception mutant (nr) identified novel hormonal signaling components that modulate salt stress responses, highlighting potential strategies to improve crop performance.
The study performs a bibliometric analysis of 1,702 Scopus-indexed tomato omics publications over two decades, revealing a rapid surge in output after 2017 and highlighting dominant fields such as biochemistry, genetics, and molecular biology. Citation and co‑authorship network analyses identify key contributions in microRNA research and genome sequencing, major research hubs, and collaborative clusters, while keyword mapping underscores stress response, fruit quality, and immunity as priority topics.
The study characterizes the tomato class B heat shock factor SlHSFB3a, revealing its age‑dependent expression in roots and its role in enhancing lateral root density by modulating auxin homeostasis. Overexpression of SlHSFB3a increases lateral root emergence, while CRISPR‑mediated knockouts produce the opposite phenotype, indicating that SlHSFB3a regulates auxin signaling through repression of auxin repressors and activation of the ARF7/LOB20 pathway.
Rapid population flux in bacterial spot xanthomonads during a transition in dominance between two genotypes in consecutive tomato production seasons and identification of a new species Xanthomonas oklahomensis sp. nov.
Authors: Johnson, B., Subedi, A., Damicone, J., Goss, E., Jones, J. B., Jibrin, M. O.
The study examined Xanthomonas strains causing bacterial spot on tomato in Oklahoma fields during 2018‑2019, revealing a shift from X. euvesicatoria pv. euvesicatoria (Xee) to X. euvesicatoria pv. perforans (Xep) race T4, which also expanded to pepper. Phenotypic assays and whole‑genome sequencing highlighted differences in race composition, host range, copper sensitivity, and effector repertoires, and identified a novel species, Xanthomonas oklahomensis.
The study functionally characterizes three tomato CNR/FWL proteins (SlFWL2, SlFWL4, SlFWL5) and demonstrates that SlFWL5 localizes to plasmodesmata, where it regulates leaf size and morphology by promoting cell expansion likely through cell‑to‑cell communication. Gain‑ and loss‑of‑function transgenic tomato lines reveal that SlFWL5 is a key regulator of organ growth via modulation of plasmodesmatal signaling.
The study characterizes all seven malic enzyme genes in tomato, analyzing their tissue-specific expression, temperature and ethylene responsiveness, and linking specific isoforms to metabolic processes such as starch and lipid biosynthesis during fruit development. Phylogenetic, synteny, recombinant protein biochemical assays, and promoter analyses were used to compare tomato enzymes with Arabidopsis counterparts, revealing complex evolutionary dynamics that decouple phylogeny from functional orthology.