The study compares transcriptional, proteomic, and metabolomic responses of wild‑type Arabidopsis and a cyp71A27 mutant to a plant‑growth‑promoting Pseudomonas fluorescens strain and a pathogenic Burkholderia glumeae strain, revealing distinct reprogramming and an unexpected signaling role for the non‑canonical P450 CYP71A27. Mutant analysis showed that loss of CYP71A27 alters gene and protein regulation, especially during interaction with the PGP bacterium, while having limited impact on root metabolites and exudates.
The genome of the vining fern Lygodium microphyllum highlights genomic and functional differences between life phases of an invasive plant
Authors: Pelosi, J., Davenport, R., Kuo, L.-Y., Gray, L. N., Dant, A. J., Kim, E. H., Li, F.-W., Dlugosch, K. M., Krabbenhoft, T. J., Barbazuk, W. B., Sessa, E. B.
The study presents a chromosome-level reference genome for the invasive fern Lygodium microphyllum and compares the transcriptomic and epigenomic profiles of its haploid gametophyte and diploid sporophyte phases, revealing differential regulation of developmental genes and similar methylation patterns across tissues. Base‑pair resolution methylome data and freezing‑stress experiments show that each life phase employs distinct molecular pathways for stress response, emphasizing the importance of considering both phases in invasive‑species management.
The study functionally characterizes three tomato CNR/FWL proteins (SlFWL2, SlFWL4, SlFWL5) and demonstrates that SlFWL5 localizes to plasmodesmata, where it regulates leaf size and morphology by promoting cell expansion likely through cell‑to‑cell communication. Gain‑ and loss‑of‑function transgenic tomato lines reveal that SlFWL5 is a key regulator of organ growth via modulation of plasmodesmatal signaling.
The study investigates how miR394 influences flowering time in Arabidopsis thaliana by combining transcriptomic profiling of mir394a mir394b double mutants with histological analysis of reporter lines. Bioinformatic analysis identified a novel lncRNA overlapping MIR394B (named MIRAST), and differential promoter activity of MIR394A and MIR394B suggests miR394 fine‑tunes flower development through transcription factor and chromatin remodeler regulation.
The study develops an updated genome-scale metabolic model of tomato leaf (CBZ_iSL3433) incorporating carbamazepine (CBZ) transformation reactions to simulate the pollutant's stress impact under phototrophic conditions. Constraint-based analysis predicts significant reductions in biomass and altered fluxes in nutrient assimilation and secondary metabolism, which are largely ameliorated by biostimulants such as proline, spermine, glycerol, and ethanol. This framework demonstrates a systems-level approach for screening strategies to mitigate pharmaceutical pollutant stress in crops.