Transcriptional responses of Solanum lycopersicum to three distinct parasites reveal host hubs and networks underlying parasitic successes
Authors: Truch, J., Jaouannet, M., Da Rocha, M., Kulhanek-Fontanille, E., Van Ghelder, C., Rancurel, C., Migliore, O., Pere, A., Jaubert, S., Coustau, C., Galiana, E., Favery, B.
The study used transcriptomic profiling to compare tomato (Solanum lycopersicum) responses to three evolutionarily distant pathogens—nematodes, aphids, and oomycetes—during compatible interactions, identifying differentially expressed genes and key host hubs. Integrating public datasets and performing co‑expression and GO enrichment analyses, the authors mapped shared dysregulation clusters and employed Arabidopsis interactome data to place tomato candidates within broader networks, highlighting potential targets for multi‑pathogen resistance.
The study demonstrates that plasmodesmata‑located protein 5 (PDLP5) interacts with plasma membrane intrinsic proteins (PIPs) to inhibit H2O2 transport across the plasma membrane in Arabidopsis. Overexpression of PDLP5 reduces H2O2 uptake and diminishes H2O2‑induced root growth inhibition, whereas pdlp5 mutants show enhanced sensitivity, with PIP2;5 identified as a key target of this regulation.
The study used live-cell fluorescence imaging of Arabidopsis thaliana pollen tubes co-expressing labeled tubulin and actin to reveal partial co-localization of the two cytoskeletal networks. Pharmacological disruption showed that microtubules depend on actin for stability in the medial region, while actin remains unaffected by microtubule loss, indicating spatially dependent cytoskeletal crosstalk. Tracking of the microtubule plus‑end binding protein EB1b demonstrated that the microtubule array is primarily parallel with plus ends oriented away from the apex.
The study demonstrates that invasion of Arabidopsis thaliana roots by the parasitic plant Phtheirospermum japonicum induces a phosphate‑starvation response in the host, which in turn leads to systemic suppression of immunity. This immunosuppression makes Arabidopsis more vulnerable to secondary microbial infections, highlighting the importance of multitrophic interactions in crop resilience.
The study identifies the AP2/ERF transcription factor GEMMIFER (MpGMFR) as essential for asexual reproduction in the liverwort Marchantia polymorpha, showing that loss of MpGMFR via genome editing or amiRNA abolishes gemma and gemma cup formation, while dexamethasone‑induced activation triggers their development. Transient strong activation of MpGMFR initiates gemma initial cells at the meristem, which mature into functional gemmae, indicating MpGMFR is both necessary and sufficient for meristem‑derived asexual propagule formation.
The circadian clock gates lateral root development
Authors: Nomoto, S., Mamerto, A., Ueno, S., Maeda, A. E., Kimura, S., Mase, K., Kato, A., Suzuki, T., Inagaki, S., Sakaoka, S., Nakamichi, N., Michael, T. P., Tsukagoshi, H.
The study identifies the circadian clock component ELF3 as a temporal gatekeeper that limits hormone‑induced pericycle proliferation and lateral root development in Arabidopsis thaliana. Time‑resolved transcriptomics, imaging, and genetic analyses show that ELF3 maintains rhythmic expression of key regulators via LNK1 and MADS‑box genes, and that loss of ELF3 disrupts this rhythm, enhancing callus growth and accelerating root organogenesis.
The genetic architecture of leaf vein density traits and its importance for photosynthesis in maize
Authors: Coyac-Rodriguez, J. L., Perez-Limon, S., Hernandez-Jaimes, E., Hernandez-Coronado, M., Camo-Escobar, D., Alonso-Nieves, A. L., Ortega-Estrada, M. d. J., Gomez-Capetillo, N., Sawers, R. J., Ortiz-Ramirez, C. H.
Using diverse Mexican maize varieties and a MAGIC population, the study demonstrated that leaf vein density is both variable and plastic, correlating positively with photosynthetic rates for small intermediate veins and increasing under heat in drought-adapted lines. Twelve QTLs linked to vein patterning were identified, highlighting candidate genes for intermediate vein development and shedding light on the evolution of high-efficiency C4 leaf architecture.
The study introduces a hybrid modeling framework that integrates a logistic ordinary differential equation with a Long Short-Term Memory neural network to form a Physics-Informed Neural Network (PINN) for predicting wheat plant height. Using only time and temperature as inputs, the PINN outperformed other longitudinal growth models, achieving the lowest average RMSE and reduced variability across multiple random initializations. The results suggest that embedding biological growth constraints within data‑driven models can substantially improve prediction accuracy for plant traits.
The study created a system that blocks root‑mediated signaling between wheat varieties in a varietal mixture and used transcriptomic and metabolomic profiling to reveal that root chemical interactions drive reduced susceptibility to Septoria tritici blotch, with phenolic compounds emerging as key mediators. Disruption of these root signals eliminates both the disease resistance phenotype and the associated molecular reprogramming.
The study demonstrates that cytokinin (CK) signaling strength is governed by the interplay of receptor preference and metabolic stability of individual CK isoforms, affecting tissue-specific responses in Arabidopsis. Using physiological, genetic, and multi-omics approaches, the authors show that dihydrozeatin compensates for lower receptor affinity with higher persistence during senescence, while N‑glucoside CKs modulate signaling intensity in a ratio‑dependent manner.