Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The study used genome‑wide ribosome profiling together with RNA‑seq to dissect translational regulation during the shift from seed dormancy to germination in Arabidopsis thaliana. It found that dormant seeds maintain a poised translational state with ribosomes pre‑positioned on stored mRNAs, and that selective changes in translational efficiency—particularly involving uORF‑mediated repression—drive germination independent of transcript levels. Functional assays confirmed that specific uORFs act as translational checkpoints during early imbibition.
The study used ribosome profiling to map translational activity across distinct physiological stages of Arabidopsis thaliana seed germination, revealing unique ribosome association patterns in dry seeds and identifying specific codon pause sites and upstream open reading frames (uORFs). Start‑codon stalling in dry seeds correlates with an adenine‑rich motif, and non‑coding RNAs previously thought to be untranslated were found to be translated, linking these features to adaptive control mechanisms during early germination.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.