Mutations in the plastid division gene PARC6 and the granule initiation gene BGC1 were combined to generate wheat plants with dramatically enlarged A-type starch granules, some exceeding 50 µm, without affecting plant growth, grain size, or overall starch content. The parc6 bgc1 double mutant was evaluated in both glasshouse and field trials, and the giant granules displayed altered viscosity and pasting temperature, offering novel functional properties for food and industrial applications.
Using ten Phaeodactylum tricornutum mutant strains with graded constitutive Lhcx1 expression, the study links NPQ induction under high light to physiological outcomes (oxidized QA, increased cyclic electron flow) and extensive transcriptomic reprogramming, affecting nearly half the genome. The approach demonstrates that higher NPQ mitigates PSII damage, boosts ATP production for repair, and drives distinct gene regulatory networks, providing a model framework for dissecting photosynthetic and gene expression integration.
A SABATH family enzyme regulates development via the gibberellin-related pathway in the liverwort Marchantia polymorpha
Authors: Kawamura, S., Shimokawa, E., Ito, M., Nakamura, I., Kanazawa, T., Iwano, M., Sun, R., Yoshitake, Y., Yamaoka, S., Yamaguchi, S., Ueda, T., Kato, M., Kohchi, T.
The study identified 12 SABATH methyltransferase genes in the liverwort Marchantia polymorpha and demonstrated that MpSABATH2 is crucial for normal thallus growth and gemma cup formation. Loss‑of‑function mutants displayed developmental phenotypes reminiscent of far‑red light responses, which were linked to gibberellin metabolism and could be partially rescued by inhibiting GA biosynthesis or supplying the GA precursor ent‑kaurenoic acid. These findings suggest that SABATH enzymes independently evolved regulatory roles in land‑plant development.
The study establishes a tractable system using the large bloom-forming diatom Coscinodiscus granii and its natural oomycete parasite Lagenisma coscinodisci, enabling manual isolation of single host cells and stable co-cultures. High‑quality transcriptomes for both partners were assembled, revealing diverse oomycete effectors and a host transcriptional response involving proteases and exosome pathways, while also profiling the co‑occurring heterotrophic flagellate Pteridomonas sp. This tripartite platform provides a unique marine model for dissecting molecular mechanisms of oomycete‑diatom interactions.
The study demonstrates that carbon availability promotes gemma cup formation in Marchantia polymorpha by activating cytokinin signaling, which up‑regulates the transcription factors MpGCAM1 and MpSTG. Pharmacological and genetic manipulations showed that cytokinin accumulation in response to sucrose and high light is sufficient to overcome low‑sucrose repression, and that this pathway operates independently of KAI2A‑MAX2 mediated karrikin signaling. The findings suggest a conserved carbon‑cytokinin interaction governing developmental plasticity across land plants.
Glycosylated diterpenes associate with early containment of Fusarium culmorum infection across wheat (Triticum aestivum L.) genotypes under field conditions
Authors: Pieczonka, S. A., Dick, F., Bentele, M., Ramgraber, L., Prey, L., Kupczyk, E., Seidl-Schulz, J., Hanemann, A., Noack, P. O., Asam, S., Schmitt-Kopplin, P., Rychlik, M.
The researchers performed a large‑scale field trial with 105 wheat (Triticum aestivum) genotypes inoculated by Fusarium culmorum, combining quantitative deoxynivalenol (DON) profiling and untargeted metabolomics to uncover molecular signatures of infection. Sesquiterpene‑derived metabolites tracked toxin accumulation, whereas glycosylated diterpene conjugates were enriched in low‑DON samples, indicating a potential defensive metabolic pathway.
The study evaluated a transgenic soybean line (VPZ-34A) expressing Arabidopsis VDE, PsbS, and ZEP for combined improvements in light‑use efficiency and carbon assimilation under ambient and elevated CO2 in a FACE experiment. While VPZ‑34A showed enhanced maximum quantum efficiency of PSII under fluctuating light, it did not increase carbon assimilation efficiency or yield, and transcriptome analysis revealed limited gene expression changes. The results suggest that VPZ‑mediated photosynthetic gains are insufficient to boost productivity under elevated CO2.
The study integrated metabolomic and transcriptomic analyses of red clover (Trifolium pratense) roots infected with Fusarium oxysporum and Phoma medicaginis to identify candidate cytochrome P450 enzymes responsible for the methylenedioxy bridge formation in (-)-maackiain biosynthesis. Using co‑expression network analysis and phylogenetic screening, five P450 candidates were selected and screened in engineered Saccharomyces cerevisiae, revealing TpPbS/CYP76F319 as the enzyme catalyzing conversion of calycosin to pseudobaptigenin. This discovery enables reconstruction of the complete (-)-maackiain pathway for potential health and agricultural applications.
The study characterizes the liverwort-specific NPR protein (MpNPR) in Marchantia polymorpha, demonstrating that it controls oil body formation and confers resistance to gastropod herbivory through interaction with the transcription factor MpERF13. Loss- or gain-of-function of MpNPR disrupts MpERF13‑dependent gene expression and compromises defense against snail feeding, revealing a lineage‑specific immune pathway distinct from tracheophyte NPR functions.
The study demonstrates that red and blue light have opposing effects on thallus growth orientation in Marchantia polymorpha, with red light promoting epinasty and blue light promoting hyponasty. Loss-of-function mutants in the respective photoreceptors and BBX transcription factors reveal antagonistic interactions that balance thallus flatness under white light. Time‑resolved transcriptomics identified rapid light‑induced genes, including all six MpBBX members, whose mutant phenotypes support this antagonistic model.