Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 4 Papers

Evolution of HMA-integrated tandem kinases accompanied by expansion of target pathogens

Authors: Asuke, S., Tagle, A. G., Hyon, G.-S., Koizumi, S., Murakami, T., Horie, A., Niwamoto, D., Katayama, E., Shibata, M., Takahashi, Y., Islam, M. T., Matsuoka, Y., Yamaji, N., Shimizu, M., Terauchi, R., Hisano, H., Sato, K., Tosa, Y.

Date: 2025-12-16 · Version: 1
DOI: 10.64898/2025.12.15.692859

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study cloned the resistance genes Rmo2 and Rwt7 from barley and wheat, revealing them as orthologous tandem kinase proteins (TKPs) with an N‑terminal heavy metal‑associated (HMA) domain. Domain‑swapping experiments indicated that the HMA domain dictates effector specificity, supporting a model of TKP diversification into paralogs and orthologs that recognize distinct pathogen effectors.

tandem kinase proteins HMA domain disease resistance barley wheat

Multipartite coevolution shapes plant apoplastic immunity against rice blast fungus

Authors: Takeda, T., Shimizu, M., Kodan, A., Utsushi, H., Kanzaki, E., Natsume, S., Imai, T., Oikawa, K., Abe, A., Terauchi, R.

Date: 2025-07-06 · Version: 1
DOI: 10.1101/2025.07.03.663104

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study demonstrates that a beta‑1,3‑glucan‑binding protein from the rice blast fungus Magnaporthe oryzae interacts with the rice thaumatin‑like protein OsPR5, which sequesters the fungal protein to trigger immunity, while the fungus secretes thaumatin‑binding proteins to counteract this defense. Additionally, a rice cell‑surface receptor kinase containing a thaumatin domain has evolved to detect the fungal GBP, highlighting a complex coevolutionary arms race in the rice apoplast.

beta‑1,3‑glucan‑binding protein Magnaporthe oryzae Oryza sativa thaumatin‑like proteins co‑evolutionary immunity

Large-scale single-cell profiling of stem cells uncovers redundant regulators of shoot development and yield trait variation

Authors: Xu, X., Passalacqua, M., Rice, B., Demesa-Arevalo, E., Kojima, M., Takebayashi, Y., Harris, B., Sakakibara, H., Gallavotti, A., Gillis, J., Jackson, D.

Date: 2025-04-17 · Version: 2
DOI: 10.1101/2024.03.04.583414

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study finely dissected shoot stem cell–enriched tissues from maize and Arabidopsis thaliana and optimized single‑cell RNA‑seq protocols to reliably capture CLAVATA3 and WUSCHEL‑expressing cells. Cross‑species comparison and functional validation, including spatial transcriptomics and mutant analyses, revealed conserved ribosome‑associated RNA‑binding proteins and sugar‑kinase families as key regulators linked to shoot development and yield traits.

single-cell RNA sequencing shoot stem cells Arabidopsis thaliana Zea mays stem cell regulators

TAC-C uncovers open chromatin interaction in crops and SPL-mediated photosynthesis regulation

Authors: Kang, J., Zhang, Z., Lin, X., Liu, F., Song, Y., Zhao, P., Lin, Y., Luo, X., Li, X., Li, Y., Wang, W., Liu, C., Xu, S., Liu, X., Xiao, J.

Date: 2025-02-10 · Version: 1
DOI: 10.1101/2025.02.10.637364

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study introduces Transposase-Accessible Chromosome Conformation Capture (TAC-C), which combines ATAC‑seq and Hi‑C to map fine‑scale chromatin interactions in rice, sorghum, maize, and wheat, revealing genome‑size‑correlated loop structures and distinct C3 vs. C4 patterns. Integration with population genetics shows that loops link distal regulatory elements to phenotypic variation, and SPL transcription factors (TaSPL7/15) modulate photosynthesis‑related genes via these interactions, enhancing photosynthetic efficiency and starch content in wheat mutants.

cis-regulatory elements chromatin loops TAC-C photosynthesis regulation wheat