Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 3 Papers

Evolution of HMA-integrated tandem kinases accompanied by expansion of target pathogens

Authors: Asuke, S., Tagle, A. G., Hyon, G.-S., Koizumi, S., Murakami, T., Horie, A., Niwamoto, D., Katayama, E., Shibata, M., Takahashi, Y., Islam, M. T., Matsuoka, Y., Yamaji, N., Shimizu, M., Terauchi, R., Hisano, H., Sato, K., Tosa, Y.

Date: 2025-12-16 · Version: 1
DOI: 10.64898/2025.12.15.692859

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study cloned the resistance genes Rmo2 and Rwt7 from barley and wheat, revealing them as orthologous tandem kinase proteins (TKPs) with an N‑terminal heavy metal‑associated (HMA) domain. Domain‑swapping experiments indicated that the HMA domain dictates effector specificity, supporting a model of TKP diversification into paralogs and orthologs that recognize distinct pathogen effectors.

tandem kinase proteins HMA domain disease resistance barley wheat

TAC-C uncovers open chromatin interaction in crops and SPL-mediated photosynthesis regulation

Authors: Kang, J., Zhang, Z., Lin, X., Liu, F., Song, Y., Zhao, P., Lin, Y., Luo, X., Li, X., Li, Y., Wang, W., Liu, C., Xu, S., Liu, X., Xiao, J.

Date: 2025-02-10 · Version: 1
DOI: 10.1101/2025.02.10.637364

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study introduces Transposase-Accessible Chromosome Conformation Capture (TAC-C), which combines ATAC‑seq and Hi‑C to map fine‑scale chromatin interactions in rice, sorghum, maize, and wheat, revealing genome‑size‑correlated loop structures and distinct C3 vs. C4 patterns. Integration with population genetics shows that loops link distal regulatory elements to phenotypic variation, and SPL transcription factors (TaSPL7/15) modulate photosynthesis‑related genes via these interactions, enhancing photosynthetic efficiency and starch content in wheat mutants.

cis-regulatory elements chromatin loops TAC-C photosynthesis regulation wheat

Metabolic network divergence: polyamine and ethylene dynamics in Arabidopsis thaliana and Solanum lycopersicum

Authors: Cermanova, K., Bublava, P., Darbandsari, M., Fellner, M., Novak, O., Karady, M.

Date: 2025-01-27 · Version: 1
DOI: 10.1101/2025.01.24.634693

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study developed a validated LC‑MS/MS method to simultaneously quantify fourteen polyamines, amino acids, and ethylene precursors in Arabidopsis thaliana and Solanum lycopersicum, and used it to compare their metabolic responses to drought, salinity, and inhibitor treatments. Distinct species‑specific metabolic adjustments were observed, with Arabidopsis showing greater fluctuations and drought generally increasing metabolite levels, while spermine exhibited stress‑specific patterns.

polyamines ethylene precursors metabolomics Arabidopsis thaliana Solanum lycopersicum