Unraveling the cis-regulatory code controlling abscisic acid-dependent gene expression in Arabidopsis using deep learning
Authors: Opdebeeck, H., Smet, D., Thierens, S., Minne, M., De Beukelaer, H., Zuallaert, J., Van Bel, M., Van Montagu, M., Degroeve, S., De Rybel, B., Vandepoele, K.
The study used an interpretable convolutional neural network to predict ABA responsiveness from proximal promoter sequences in Arabidopsis thaliana, revealing both known ABF-binding motifs and novel regulatory elements. Model performance was boosted by advanced data augmentation, and predicted regulatory regions were experimentally validated using reporter lines, confirming the inferred cis‑regulatory code.
The study presents GenoRetriever, an interpretable deep learning framework trained on STRIPE-seq data from soybean and other crops, that predicts transcription start site locations and usage by identifying 27 core promoter motifs. Validation using in silico motif insertions, saturation mutagenesis, and CRISPR‑Cas9 promoter editing demonstrates high predictive accuracy and reveals domestication‑driven motif usage shifts and lineage‑specific effects. The tool is provided via a web server for promoter analysis and design, offering a new resource for plant functional genomics and crop improvement.
The study investigates the altered timing of the core circadian oscillator gene ELF3 in wheat compared to Arabidopsis, revealing that dawn-specific expression in wheat arises from repression by TOC1. An optimized computational model integrating experimental expression data and promoter architecture predicts that wheat’s circadian oscillator remains robust despite this shift, indicating flexibility in plant circadian network design.
The Global Wheat Full Semantic Organ Segmentation (GWFSS) dataset
Authors: Wang, Z., Zenkl, R., Greche, L., De Solan, B., Bernigaud Samatan, L., Ouahid, S., Visioni, A., Robles-Zazueta, C. A., Pinto, F., Perez-Olivera, I., Reynolds, M. P., Zhu, C., Liu, S., D'argaignon, M.-P., Lopez-Lozano, R., Weiss, M., Marzougui, A., Roth, L., Dandrifosse, S., Carlier, A., Dumont, B., Mercatoris, B., Fernandez, J., Chapman, S., Najafian, K., Stavness, I., Wang, H., Guo, W., Virlet, N., Hawkesford, M., Chen, Z., David, E., Gillet, J., Irfan, K., Comar, A., Hund, A.
The Global Wheat Dataset Consortium released a comprehensive semantic segmentation dataset (GWFSS) of wheat organs across developmental stages, comprising 1,096 fully annotated images and 52,078 unannotated images from 11 institutions. Models based on DeepLabV3Plus and Segformer were trained, with Segformer achieving ≈90% mIoU for leaves and spikes but lower precision (54%) for stems, while also enabling weed exclusion and discrimination of necrotic, senescent, and residue tissues.
The study introduces an in-soil fiber Bragg grating (FBG) sensing system that continuously records three-dimensional strain from growing pseudo-roots, enabling non‑destructive monitoring of root architecture. Using two ResNet models, the system predicts root width and depth with over 90% accuracy, and performance improves to 96‑98% after retraining on data from actual corn (Zea mays) roots over a 30‑day period. This prototype demonstrates potential for scalable, real‑time root phenotyping and broader soil environment sensing.
RNA‑seq of 328 wheat lines using a pan‑genome reference uncovered over 20,000 additional transcripts beyond the Chinese Spring genome and enabled construction of a pan‑gene eQTL regulatory atlas. Multi‑omics integration identified 231 high‑confidence candidate genes influencing 34 agronomic traits and powdery mildew resistance, with functional validation showing 80% of candidates affecting trait phenotypes via an EMS mutant library.
This review compiles experimental studies on wheat to assess how elevated CO₂, higher temperatures, and water deficit interact and affect productivity and water use. By calculating plasticity indices, the authors find that despite CO₂‑induced gains, overall yield generally declines under combined stress, while water consumption often decreases. They highlight the need for more data to improve and validate crop models under future climate scenarios.
The study introduces Transposase-Accessible Chromosome Conformation Capture (TAC-C), which combines ATAC‑seq and Hi‑C to map fine‑scale chromatin interactions in rice, sorghum, maize, and wheat, revealing genome‑size‑correlated loop structures and distinct C3 vs. C4 patterns. Integration with population genetics shows that loops link distal regulatory elements to phenotypic variation, and SPL transcription factors (TaSPL7/15) modulate photosynthesis‑related genes via these interactions, enhancing photosynthetic efficiency and starch content in wheat mutants.