Regenerative agriculture effects on biomass, drought resilience and 14C-photosynthate allocation in wheat drilled into ley compared to disc or ploughed arable soil
Authors: Austen, N., Short, E., Tille, S., Johnson, I., Summers, R., Cameron, D. D., Leake, J. R.
Regenerative agriculture using a grass-clover ley increased wheat yields and macroaggregate stability despite reduced root biomass, but did not enhance soil carbon sequestration as measured by 14C retention. Drought further decreased photosynthate allocation to roots, especially in ley soils, while genotype effects on yield were minimal.
The study examines how proteasomal degradation of A‑class and B‑class Auxin Response Factors (ARFs) is regulated in the bryophyte Marchantia polymorpha, identifying a key residue required for MpARF2 degradation that is also conserved in MpARF1. While disruption of MpARF2 degradation impairs development across life‑cycle stages, blocking MpARF1 degradation has minimal phenotypic impact, indicating divergent functional integration despite a shared degradation mechanism.
The study examined how soil phosphorus and nitrogen availability influence wheat root-associated arbuscular mycorrhizal fungal (AMF) communities and the expression of mycorrhizal nutrient transporters. Field sampling across two years combined with controlled pot experiments showed that P and N jointly affect AMF colonisation, community composition (with Funneliformis dominance under high P), and regulation of phosphate, ammonium, and nitrate transporters. Integrating metabarcoding and RT‑qPCR provides a framework to assess AMF contributions to crop nutrition.
The study compared aphid resistance and Barley Yellow Dwarf Virus (BYDV) transmission among three wheat varieties (G1, RGT Wolverine, RGT Illustrious). G1 emits the repellent 2‑tridecanone, restricts aphid phloem access, and shows reduced BYDV transmission, whereas RGT Wolverine limits systemic viral infection despite high transmission efficiency. The authors suggest breeding the two resistance mechanisms together for improved protection.
The study investigated whether wheat homoeologous genes actively compensate for each other when one copy acquires a premature termination codon (PTC) mutation. By analyzing mutagenised wheat lines, the authors found that only about 3% of cases exhibited upregulation of the unaffected homoeolog, indicating that widespread active transcriptional compensation is absent in wheat.
Overexpression of the wheat bHLH transcription factor TaPGS1 leads to increased flavonol accumulation in the seed coat, which disrupts polar auxin transport and causes localized auxin accumulation, delaying endosperm cellularization and increasing cell number, thereby enlarging grain size. Integrated metabolomic and transcriptomic analyses identified upregulated flavonol biosynthetic genes, revealing a regulatory module that links flavonol-mediated auxin distribution to seed development in wheat.
The study evaluated how alginate oligosaccharide (AOS) chain length influences the levels of seven key phytohormones in wheat seedlings challenged with Botrytis cinerea. Hormone profiling revealed that mid‑range oligomers (DP 4‑6) most strongly up‑regulate defense‑related hormones (JA, SA, ABA, CTK), whereas longer oligomers (DP 7) most effectively suppress ethylene. These findings suggest that tailoring AOS polymerization can optimize disease resistance and growth in cereal crops.
Modulation of the GT Family 47 clade B gene affects arabinan deposition in elaters of Marchantia polymorpha
Authors: Kang, H. S. F., Lampugnani, E. R., Tong, X., Prabhakar, P. K., Flores-Sandoval, E., Hansen, J., Jorgensen, B., Bowman, J. L., Urbanowicz, B. R., Ebert, B., Persson, S.
The study investigates the function of two GT47B arabinan arabinosyltransferases in the liverwort Marchantia polymorpha, generating loss‑of‑function and overexpression lines to assess cell wall composition. Using CoMPP, glycosyl linkage analysis, and LM6 immunolabelling, the authors found that MpARADL2 mutants have reduced 1,5‑L‑arabinan epitopes in elaters despite unchanged overall 5‑linked Araf levels, suggesting additional enzymes compensate in thallus tissue. Attempts to express and purify the enzymes in HEK293 cells failed, implying a clade‑specific solubility requirement and highlighting the need to identify interacting partners.
The Building Blocks of Early Land Plants: Glycosyltransferases and Cell Wall Architecture in the model liverwort Marchantia polymorpha
Authors: Kang, H. S. F., Tong, X., Mariette, A., Leong, M., Beahan, C., Flores-Sandoval, E., Pedersen, G., Rautengarten, C., Bowman, J. L., Ebert, B., Bacic, A., Doblin, M., Persson, S., Lampugnani, E. R.
The study characterizes the composition and structure of cell wall glycans in eight tissue types of the liverwort Marchantia polymorpha, revealing both typical land‑plant features and unique traits such as abundant (1,5)-arabinan in sporophytes and low overall pectin levels. Comparative genomic analysis shows a diversified glycosyltransferase repertoire relative to Arabidopsis, and the authors created a Gateway‑compatible library of 93 M. polymorpha GTs to facilitate future functional studies.
The authors identified MpCAFA, a protein combining CAPS-like and FAP115-like domains, as a key factor for rapid ciliary swimming in the liverwort Marchantia polymorpha spermatozoids. Loss-of-function mutants displayed markedly reduced swimming speed despite normal axoneme structure, chemotaxis, and fertility, and these defects were rescued by a MpCAFA‑mCitrine fusion that localized along the entire cilium. Both the CAPS-like and FAP115-like regions are required for MpCAFA’s function and ciliary targeting, establishing it as a major ciliary protein and a marker for visualizing spermatozoid motility.