Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 40 Papers

Physics-Informed Neural Network Methods for Predicting Plant Height Development

Authors: Shao, Y., van Eeuwijk, F., Peeters, C., Zumsteg, O., Athanasiadis, I., van Voorn, G.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.14.699475

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study introduces a hybrid modeling framework that integrates a logistic ordinary differential equation with a Long Short-Term Memory neural network to form a Physics-Informed Neural Network (PINN) for predicting wheat plant height. Using only time and temperature as inputs, the PINN outperformed other longitudinal growth models, achieving the lowest average RMSE and reduced variability across multiple random initializations. The results suggest that embedding biological growth constraints within data‑driven models can substantially improve prediction accuracy for plant traits.

Physics-Informed Neural Network logistic ODE Long Short-Term Memory plant height prediction wheat

CRK5 preserves antioxidant homeostasis and prevents cell death during dark-induced senescence through inhibiting the salicylic acid signaling pathway

Authors: Kamran, M., Burdiak, P., Rusaczonek, A., Zarrin Ghalami, R., Karpinski, S.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.12.698963

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the cysteine‑rich receptor‑like kinase CRK5 as a negative regulator of salicylic‑acid‑mediated cell death and a positive regulator of antioxidant homeostasis during dark‑induced leaf senescence in Arabidopsis. Loss‑of‑function crk5 mutants display accelerated senescence, elevated ROS and electrolyte leakage, and altered antioxidant enzyme activities, phenotypes that are rescued by suppressing SA biosynthesis or catabolism. Transcriptome analysis reveals extensive deregulation of senescence‑ and redox‑related genes, highlighting CRK5’s central role in coordinating hormonal and oxidative pathways.

dark-induced senescence salicylic acid signaling CRK5 receptor kinase reactive oxygen species antioxidant homeostasis

Evolution of HMA-integrated tandem kinases accompanied by expansion of target pathogens

Authors: Asuke, S., Tagle, A. G., Hyon, G.-S., Koizumi, S., Murakami, T., Horie, A., Niwamoto, D., Katayama, E., Shibata, M., Takahashi, Y., Islam, M. T., Matsuoka, Y., Yamaji, N., Shimizu, M., Terauchi, R., Hisano, H., Sato, K., Tosa, Y.

Date: 2025-12-16 · Version: 1
DOI: 10.64898/2025.12.15.692859

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study cloned the resistance genes Rmo2 and Rwt7 from barley and wheat, revealing them as orthologous tandem kinase proteins (TKPs) with an N‑terminal heavy metal‑associated (HMA) domain. Domain‑swapping experiments indicated that the HMA domain dictates effector specificity, supporting a model of TKP diversification into paralogs and orthologs that recognize distinct pathogen effectors.

tandem kinase proteins HMA domain disease resistance barley wheat

Targeting granule initiation and amyloplast structure to create giant starch granules in wheat

Authors: McNelly, R., Esch, L., Ngai, Q. Y., Pohan, K., Stringer, R., Fahy, B., Warren, F., Seung, D.

Date: 2025-12-15 · Version: 1
DOI: 10.64898/2025.12.12.693964

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

Mutations in the plastid division gene PARC6 and the granule initiation gene BGC1 were combined to generate wheat plants with dramatically enlarged A-type starch granules, some exceeding 50 µm, without affecting plant growth, grain size, or overall starch content. The parc6 bgc1 double mutant was evaluated in both glasshouse and field trials, and the giant granules displayed altered viscosity and pasting temperature, offering novel functional properties for food and industrial applications.

starch granule size PARC6 BGC1 wheat giant starch granules

Glycosylated diterpenes associate with early containment of Fusarium culmorum infection across wheat (Triticum aestivum L.) genotypes under field conditions

Authors: Pieczonka, S. A., Dick, F., Bentele, M., Ramgraber, L., Prey, L., Kupczyk, E., Seidl-Schulz, J., Hanemann, A., Noack, P. O., Asam, S., Schmitt-Kopplin, P., Rychlik, M.

Date: 2025-12-04 · Version: 1
DOI: 10.64898/2025.12.02.691979

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The researchers performed a large‑scale field trial with 105 wheat (Triticum aestivum) genotypes inoculated by Fusarium culmorum, combining quantitative deoxynivalenol (DON) profiling and untargeted metabolomics to uncover molecular signatures of infection. Sesquiterpene‑derived metabolites tracked toxin accumulation, whereas glycosylated diterpene conjugates were enriched in low‑DON samples, indicating a potential defensive metabolic pathway.

wheat Fusarium head blight deoxynivalenol untargeted metabolomics diterpene conjugates

Identification of a putative RBOHD-FERONIA-CRK10-PIP2;6 plasma membrane complex that interacts with phyB to regulate ROS production in Arabidopsis thaliana

Authors: Mohanty, D., Fichman, Y., Pelaez-Vico, M. A., Myers, R. J., Sealander, M., Sinha, R., Morrow, J., Eckstein, R., Olson, K., Xu, C., An, H., Yoo, C. Y., Zhu, J.-K., Zhao, C., Zandalinas, S. I., Liscum, E., Mittler, R.

Date: 2025-11-26 · Version: 1
DOI: 10.1101/2025.11.23.689998

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that FERONIA and phytochrome B physically interact with the NADPH oxidase RBOHD, and that FERONIA-mediated phosphorylation of phyB is essential for RBOHD-driven ROS production under excess light stress in Arabidopsis thaliana. Additional membrane proteins CRK10 and PIP2;6 also associate with this complex, forming a plasma‑membrane assembly that integrates multiple signaling pathways to regulate stress‑induced ROS.

reactive oxygen species FERONIA phytochrome B RBOHD excess light stress

Proline transporters balance the salicylic acid-mediated trade-off between regeneration and immunity in plants

Authors: Yang, L., Xu, D., Belew, Z. M., Cassia Ferreira Dias, N., Wang, L., Zhang, A., Chen, Y.-F. S., Newton, C. J., Kong, F., Zheng, Y., Yao, Y., Brewer, M. T., Teixeira, P. J. P. L., Nour-Eldin, H. H., Xu, D.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.20.689487

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study identifies wound‑induced proline transporters ProT2 and ProT3 as central regulators that link salicylic acid signaling to the suppression of de novo root regeneration (DNRR) via modulation of reactive oxygen species dynamics. Genetic loss of these transporters or pharmacological inhibition of proline transport alleviates SA‑mediated regeneration inhibition across several plant species without compromising disease resistance.

salicylic acid proline transporters de novo root regeneration reactive oxygen species immunity‑regeneration trade‑off

Dual recognition of structurally unrelated mildew effectors underlies the broad-spectrum resistance of Pm3e in wheat

Authors: Kunz, L., Bernasconi, Z., Heuberger, M., Isaksson, J., Sotiropoulos, A. G., Stirnemann, U., Jigisha, J., Menardo, F., Wicker, T., Mueller, M. C., Keller, B.

Date: 2025-10-30 · Version: 2
DOI: 10.1101/2025.10.26.683672

Category: Plant Biology

Model Organism: Triticum aestivum (wheat)

AI Summary

The study investigates the wheat Pm3 NLR allelic series, revealing that near-identical Pm3d and Pm3e alleles confer broad-spectrum resistance by recognizing multiple, structurally diverse powdery mildew effectors. Using chimeric NLR constructs, the authors pinpoint specificity-determining polymorphisms and demonstrate that engineered combinations of Pm3d and Pm3e further expand effector recognition, showcasing the potential for durable wheat protection through NLR engineering.

broad-spectrum resistance NLR receptors Pm3 alleles powdery mildew effectors wheat

Role of AtCPK5 and AtCPK6 in the regulation of the plant immune response triggered by rhamnolipids in Arabidopsis

Authors: STANEK, J., FERNANDEZ, O., BOUDSOCQ, M., AGGAD, D., VILLAUME, S., PARENT, L., DHONDT CORDELIER, S., CROUZET, J., DOREY, S., CORDELIER, S.

Date: 2025-10-23 · Version: 1
DOI: 10.1101/2025.10.22.683368

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how Arabidopsis calcium‑dependent protein kinases AtCPK5 and AtCPK6 modulate immunity triggered by bacterial rhamnolipids, finding that RLs up‑regulate these kinases and that mutants, especially cpk5/6, show altered reactive oxygen species production and defense gene expression. However, these kinases did not influence RL‑induced electrolyte leakage or resistance to Pseudomonas syringae pv. tomato DC3000, indicating additional signaling components are involved.

rhamnolipids calcium dependent protein kinases Arabidopsis thaliana immunity reactive oxygen species defense gene expression

Spatiotemporal Analysis Reveals Mechanisms Controlling Reactive Oxygen Species and Calcium Interplay Following Root Compression

Authors: Vinet, P., Audemar, V., Durand-Smet, P., Frachisse, J.-M., Thomine, S.

Date: 2025-10-23 · Version: 1
DOI: 10.1101/2025.10.22.683952

Category: Plant Biology

Model Organism: General

AI Summary

Using a microfluidic valve rootchip, the study simultaneously tracked ROS and calcium dynamics in compressed roots and found three kinetic phases linking mechanosensitive channel activity, NADPH oxidase‑dependent ROS accumulation, and secondary calcium influx. Pharmacological inhibition revealed that a fast calcium response is mediated by plasma‑membrane mechanosensitive channels, while a slower calcium increase is driven by ROS production.

mechanotransduction reactive oxygen species calcium signaling microfluidic compression root biology
Page 1 of 4 Next