The authors applied semi‑supervised deep‑learning to super‑resolution images of modern and fossil grass pollen, training convolutional neural networks to extract abstract morphological features. These features were used to quantify past grass community diversity and C3:C4 ratios in a 25,000‑year lake‑sediment record, revealing a marked diversity loss during the last glacial and a gradual decline of C4 grasses in the Holocene.
The authors introduce AdaPoinTr, a geometry-aware transformer that predicts the alpha‑shape of coniferous tree crowns from incomplete terrestrial or mobile laser‑scanning point clouds, focusing on crown reconstruction rather than full tree completion. Trained on synthetically generated partial crowns, the model consistently improves crown shape similarity and reduces height estimation bias across three diverse forest datasets, providing a cost‑effective solution for enhanced 3D forest structural monitoring.
The study introduces a hybrid modeling framework that integrates a logistic ordinary differential equation with a Long Short-Term Memory neural network to form a Physics-Informed Neural Network (PINN) for predicting wheat plant height. Using only time and temperature as inputs, the PINN outperformed other longitudinal growth models, achieving the lowest average RMSE and reduced variability across multiple random initializations. The results suggest that embedding biological growth constraints within data‑driven models can substantially improve prediction accuracy for plant traits.
Root-Suppressed Phenotype of Tomato Rs Mutant is Seemingly Related to Expression of Root-Meristem-Specific Sulfotransferases
Authors: Kumari, A., Gupta, P., Santisree, P., Pamei, I., Valluri,, S., Sharma, K., Venkateswara Rao, K., Shukla, S., Nama, S., Sreelakshmi, Y., Sharma, R.
The study characterizes a radiation‑induced root‑suppressed (Rs) mutant in tomato that displays dwarfism and pleiotropic defects in leaves, flowers, and fruits. Metabolite profiling and rescue with H2S donors implicate disrupted sulfur metabolism, and whole‑genome sequencing identifies promoter mutations in two root‑meristem‑specific sulfotransferase genes as likely contributors to the root phenotype.
An ancient alkalinization factor informs Arabidopsis root development
Authors: Xhelilaj, K., von Arx, M., Biermann, D., Parvanov, A., Faiss, N., Monte, I., Klingelhuber, F., Zipfel, C., Timmermans, M., Oecking, C., Gronnier, J.
The study identifies members of the REMORIN protein family as inhibitors of plasma membrane H⁺‑ATPases, leading to extracellular pH alkalinization that modulates cell surface processes such as steroid hormone signaling and coordinates root developmental transitions in Arabidopsis thaliana. This inhibition represents an ancient mechanism predating root evolution, suggesting that extracellular pH patterning has shaped plant morphogenesis.
Evolution of HMA-integrated tandem kinases accompanied by expansion of target pathogens
Authors: Asuke, S., Tagle, A. G., Hyon, G.-S., Koizumi, S., Murakami, T., Horie, A., Niwamoto, D., Katayama, E., Shibata, M., Takahashi, Y., Islam, M. T., Matsuoka, Y., Yamaji, N., Shimizu, M., Terauchi, R., Hisano, H., Sato, K., Tosa, Y.
The study cloned the resistance genes Rmo2 and Rwt7 from barley and wheat, revealing them as orthologous tandem kinase proteins (TKPs) with an N‑terminal heavy metal‑associated (HMA) domain. Domain‑swapping experiments indicated that the HMA domain dictates effector specificity, supporting a model of TKP diversification into paralogs and orthologs that recognize distinct pathogen effectors.
Mutations in the plastid division gene PARC6 and the granule initiation gene BGC1 were combined to generate wheat plants with dramatically enlarged A-type starch granules, some exceeding 50 µm, without affecting plant growth, grain size, or overall starch content. The parc6 bgc1 double mutant was evaluated in both glasshouse and field trials, and the giant granules displayed altered viscosity and pasting temperature, offering novel functional properties for food and industrial applications.
Glycosylated diterpenes associate with early containment of Fusarium culmorum infection across wheat (Triticum aestivum L.) genotypes under field conditions
Authors: Pieczonka, S. A., Dick, F., Bentele, M., Ramgraber, L., Prey, L., Kupczyk, E., Seidl-Schulz, J., Hanemann, A., Noack, P. O., Asam, S., Schmitt-Kopplin, P., Rychlik, M.
The researchers performed a large‑scale field trial with 105 wheat (Triticum aestivum) genotypes inoculated by Fusarium culmorum, combining quantitative deoxynivalenol (DON) profiling and untargeted metabolomics to uncover molecular signatures of infection. Sesquiterpene‑derived metabolites tracked toxin accumulation, whereas glycosylated diterpene conjugates were enriched in low‑DON samples, indicating a potential defensive metabolic pathway.
The study assessed how well common deep learning models (ResNet, EfficientNet, Inception, MobileNet) generalize across different tomato pest and disease image datasets. While models performed well on the dataset they were trained on, they suffered substantial accuracy drops when applied to other datasets, indicating that architectural changes alone cannot overcome dataset variability. The results highlight the necessity for more diverse, representative training data to improve real-world deployment of PPD diagnostic tools.
The study investigates the wheat Pm3 NLR allelic series, revealing that near-identical Pm3d and Pm3e alleles confer broad-spectrum resistance by recognizing multiple, structurally diverse powdery mildew effectors. Using chimeric NLR constructs, the authors pinpoint specificity-determining polymorphisms and demonstrate that engineered combinations of Pm3d and Pm3e further expand effector recognition, showcasing the potential for durable wheat protection through NLR engineering.